257
Views
2
CrossRef citations to date
0
Altmetric
Review

Effects of 9,300 nm Carbon Dioxide Laser on Dental Hard Tissue: A Concise Review

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 155-161 | Published online: 30 Apr 2021

References

  • Zhang Y, Wang Y. Improved degree of conversion of model self-etching adhesives through their interaction with dentine. J Dent. 2012;40(1):57–63. doi:10.1016/j.jdent.2011.10.004
  • Taube F, Ylmén R, Shchukarev A, Nietzsche S, Norén JG. Morphological and chemical characterization of tooth enamel exposed to alkaline agents. J Dent. 2010;38(1):72–81. doi:10.1016/j.jdent.2009.09.006
  • Verma SK, Maheshwari S, Singh RK, Chaudhari PK. Laser in dentistry: an innovative tool in modern dental practice. Natl J Maxillofac Surg. 2012;3:124–132. doi:10.4103/0975-5950.111342
  • Luk K, Yu OY, Mei ML, Gutknecht N, Chu CH, Zhao IS. Effects of carbon dioxide lasers on preventing caries: a literature review. Lasers Dent Sci. 2019;3(2):83–90. doi:10.1007/s41547-019-00065-8
  • Luk K, Zhao IS, Gutknecht N, Chu CH. Use of carbon dioxide lasers in dentistry. Lasers Dent Sci. 2019;3(1):1–9. doi:10.1007/s41547-018-0047-y
  • Fried D, Zuerlein MJ, Le CQ, Featherstone JD. Thermal and chemical modification of dentin by 9–11‐μm CO2 laser pulses of 5–100‐μs duration. Lasers Surg Med. 2002;31(4):275–282. doi:10.1002/lsm.10100
  • Featherstone JD, Fried D. Fundamental interactions of laserswith dental hard tissues. Med Laser Appl. 2001;16(3):181–194. doi:10.1078/1615-1615-00022
  • Takahashi K, Kimura Y, Matsumoto K. Morphological and atomic analytical changes after CO2 laser irradiation emitted at 9.3 μm on human dental hard tissues. J Clin Laser Med Surg. 1998;16(3):167–173. doi:10.1089/clm.1998.16.167
  • Rechmann P, Rechmann BM, Groves WH Jr, et al. Caries inhibition with a CO2 9.3 μm laser: an in vitro study. Lasers Surg Med. 2016;48(5):546–554. doi:10.1002/lsm.22497
  • Featherstone JD, Fried D, Bitten ER. Mechanism of laser-induced solubility reduction of dental enamel. Lasers in Dentistry III: International Society for Optics and Photonics; 1997:112–116.
  • Le CQ, Fried D, Featherstone JD. Lack of dentin acid resistance following 9.3 μm CO2 laser irradiation. Lasers in dentistry XIV: International Society for Optics and Photonics; 2008:68430J.
  • Kwon SJ, Park YJ, Jun SH, et al. Thermal irritation of teeth during dental treatment procedures. Restor Dent Endod. 2013;38:105–112. doi:10.5395/rde.2013.38.3.105
  • Assa S, Meyer S, Fried D. Ablation of dental hard tissues with a microsecond pulsed carbon dioxide laser operating at 9.3-μm with an integrated scanner. Proc SPIE Int Soc Opt Eng. 2008;6843:684308. doi:10.1117/12.778799
  • Nguyen D, Chang K, Hedayatollahnajafi S, et al. High-speed scanning ablation of dental hard tissues with a λ = 9.3 μm CO2 laser: adhesion, mechanical strength, heat accumulation, and peripheral thermal damage. J Biomed Opt. 2011;16:071410. doi:10.1117/1.3603996
  • Fantarella D, Kotlow L. The 9.3-µm CO2 dental laser: technical development and early clinical experiences. J Dent Lasers. 2014;22:1.
  • Featherstone J, Barrett-Vespone N, Fried D, Kantorowitz Z, Seka W. CO2 laser inhibition of artificial caries-like lesion progression in dental enamel. J Dent Res. 1998;77:1397–1403. doi:10.1177/00220345980770060401
  • Staninec M, Darling CL, Goodis HE, et al. Pulpal effects of enamel ablation with a microsecond pulsed λ= 9.3‐µm CO2 laser. Lasers Surg Med. 2009;41:256–263. doi:10.1002/lsm.20748
  • Rechmann P, Le CQ, Kinsel R, Kerbage C, Rechmann BMT. In vitro CO2 9.3-µm short-pulsed laser caries prevention-effects of a newly developed laser irradiation pattern. Lasers Med Sci. 2020;35:979–989. doi:10.1007/s10103-019-02940-z
  • Badreddine AH, Couitt S, Donovan J, Cantor-Balan R, Kerbage C, Rechmann P. Demineralization inhibition by high-speed scanning of 9.3 µm CO2 single laser pulses over enamel. Lasers Surg Med. 2020. doi:10.1002/lsm.23340
  • Chan KH, Fried D. Selective removal of demineralization using near infrared cross polarization reflectance and a carbon dioxide laser. Lasers in Dentistry XVIII: International Society for Optics and Photonics; 2012:82080U.
  • Tom H, Chan KH, Saltiel D, Fried D. Selective removal of demineralized enamel using a CO2 laser coupled with near-IR reflectance imaging. Lasers in Dentistry XXI: International Society for Optics and Photonics; 2015:93060M.
  • Tom H, Chan KH, Darling CL, Fried D. Near‐IR image‐guided laser ablation of demineralization on tooth occlusal surfaces. Lasers Surg Med. 2016;48(1):52–61. doi:10.1002/lsm.22438
  • Chan KH, Fried NM, Fried D. Selective ablation of carious lesions using an integrated multispectral near-IR imaging system and a novel 9.3-µm CO2 laser. Lasers in Dentistry XXIV: International Society for Optics and Photonics; 2018:104730E.
  • Ngo A, Chan KH, Le O, Simon JC, Fried D. Image-guided removal of interproximal lesions with a CO2 laser. Lasers in Dentistry XXIV: International Society for Optics and Photonics; 2018:104730T.
  • Chan KH, Fried D. Selective ablation of dental caries using coaxial CO2 (9.3-μm) and near-IR (1880-nm) lasers. Lasers Surg Med. 2019;51(2):176–184. doi:10.1002/lsm.23002
  • Konishi N, Fried D, Staninec M, Featherstone J. Artificial caries removal and inhibition of artificial secondary caries by pulsed CO2 laser irradiation. Am J Dent. 1999;12(5):213–216.
  • Fried D, Featherstone JD, Le CQ, Fan K. Dissolution studies of bovine dental enamel surfaces modified by high-speed scanning ablation with a λ = 9.3-µm TEA CO2 laser. Lasers Surg Med. 2006;38(9):837–845. doi:10.1002/lsm.20385
  • Hsu CY, Jordan T, Dederich D, Wefel J. Effects of low-energy CO2 laser irradiation and the organic matrix on inhibition of enamel demineralization. J Dent Res. 2000;79(9):1725–1730. doi:10.1177/00220345000790091401
  • Pollick H. The role of fluoride in the prevention of tooth decay. Pediatr Clin North Am. 2018;65(5):923–940. doi:10.1016/j.pcl.2018.05.014
  • Kim HN, Kim JB, Jeong SH. Remineralization effects when using different methods to apply fluoride varnish in vitro. J Dent Sci. 2018;13(4):360–366. doi:10.1016/j.jds.2018.07.004
  • Vlacic J, Meyers I, Kim J, Walsh L. Laser‐activated fluoride treatment of enamel against an artificial caries challenge: comparison of five wavelengths. Aust Dent J. 2007;52(2):101–105. doi:10.1111/j.1834-7819.2007.tb00472.x
  • Rechmann P, Charland DA, Rechmann BM, Le CQ, Featherstone JD. In‐vivo occlusal caries prevention by pulsed CO2 laser and fluoride varnish treatment—A clinical pilot study. Lasers Surg Med. 2013;45:302–310. doi:10.1002/lsm.22141
  • Zhao IS, Xue VW, Yin IX, Niu JY, Lo ECM, Chu CH. Use of a novel 9.3-μm carbon dioxide laser and silver diamine fluoride: prevention of enamel demineralisation and inhibition of cariogenic bacteria. Dent Mater. 2021;8:S0109–5641(21)00079-8.
  • Hsu DJ, Darling CL, Lachica MM, Fried D. Nondestructive assessment of the inhibition of enamel demineralization by CO2 laser treatment using polarization sensitive optical coherence tomography. J Biomed Opt. 2008;13(5):054027. doi:10.1117/1.2976113
  • Can AM, Darling CL, Ho C, Fried D. Non-destructive assessment of inhibition of demineralization in dental enamel irradiated by a λ=9.3-µm CO2 laser at ablative irradiation intensities with PS-OCT. Lasers Surg Med. 2008;40(5):342–349. doi:10.1002/lsm.20633
  • Lee R, Chan KH, Jew J, Simon JC, Fried D. Synergistic effect of fluoride and laser irradiation for the inhibition of the demineralization of dental enamel. Proceedings of SPIE - The International Society for Optical Engineering; 2017:10044.
  • Manesh SK, Darling CL, Fried D. Nondestructive assessment of dentin demineralization using polarization-sensitive optical coherence tomography after exposure to fluoride and laser irradiation. J Biomed Mater Res Part B Appl Biomater. 2009;90B(2):802–812. doi:10.1002/jbm.b.31349
  • Rechmann P, Sherathiya K, Kinsel R, Vaderhobli R, Rechmann B. Influence of irradiation by a novel CO2 9.3-μm short-pulsed laser on sealant bond strength. Lasers Med Sci. 2017;32(3):609–620. doi:10.1007/s10103-017-2155-4
  • Rechmann P, Bartolome N, Kinsel R, Vaderhobli R, Rechmann BMT. Bond strength of etch-and-rinse and self-etch adhesive systems to enamel and dentin irradiated with a novel CO2 9.3 μm short-pulsed laser for dental restorative procedures. Lasers Med Sci. 2017;32(9):1981–1993. doi:10.1007/s10103-017-2302-y
  • Nguyen D, Staninec M, Lee C, Fried D. High-speed scanning ablation of dental hard tissues with a lambda=9.3-µm CO2 laser: heat accumulation and peripheral thermal damage. Lasers in Dentistry XVI: International Society for Optics and Photonics; 2010:754907.
  • Luk K, Zhao IS, Yu OY, Zhang J, Gutknecht N, Chu CH. Effects of 10,600 nm carbon dioxide laser on remineralizing caries: a literature review. Photobiomodul Photomed Laser Surg. 2020;38(2):59–65. doi:10.1089/photob.2019.4690
  • Kimura Y, Takahashi-Sakai K, Wilder-Smith P, Krasieva TB, Liaw LHL, Matsumoto K. Morphological study of the effects of CO2 laser emitted at 9.3 μm on human dentin. J Clin Laser Med Surg. 2000;18(4):197–202. doi:10.1089/10445470050144047
  • Featherstone JD, Zhang S, Shariati M, McCormack SM. Carbon dioxide laser effects on caries-like lesions of dental enamel. Lasers Orthop Dent Vet Med. 1991;145–149.