159
Views
4
CrossRef citations to date
0
Altmetric
Original Research

Cost-Utility Analysis of Anterior Vertebral Body Tethering versus Spinal Fusion in Idiopathic Scoliosis from a US Integrated Healthcare Delivery System Perspective

, , , , , , & ORCID Icon show all
Pages 175-190 | Published online: 15 Mar 2021

References

  • Cheng JC, Castelein RM, Chu WC, et al. Adolescent idiopathic scoliosis. Nat Rev Dis Primers. 2015;1(1):15030. doi:10.1038/nrdp.2015.30
  • Dunn J, Henrikson NB, Morrison CC, et al. Screening for adolescent idiopathic scoliosis: evidence report and systematic review for the US preventive services task force. JAMA. 2018;319(2):173–187. doi:10.1001/jama.2017.11669
  • Konieczny MR, Senyurt H, Krauspe R. Epidemiology of adolescent idiopathic scoliosis. J Child Orthop. 2013;7(1):3–9. doi:10.1007/s11832-012-0457-4
  • Sato T, Hirano T, Ito T, et al. Back pain in adolescents with idiopathic scoliosis: epidemiological study for 43,630 pupils in Niigata City, Japan. Eur Spine J. 2011;20(2):274–279. doi:10.1007/s00586-010-1657-6
  • Helenius L, Diarbakerli E, Grauers A, et al. Back pain and quality of life after surgical treatment for adolescent idiopathic scoliosis at 5-year follow-up: comparison with healthy controls and patients with untreated idiopathic scoliosis. J Bone Joint Surg Am. 2019;101(16):1460–1466. doi:10.2106/JBJS.18.01370
  • Ramirez N, Johnston CE, Browne RH. The prevalence of back pain in children who have idiopathic scoliosis. J Bone Joint Surg Am. 1997;79(3):364–368. doi:10.2106/00004623-199703000-00007
  • Larson AN, Baky F, Ashraf A, et al. Minimum 20-year health-related quality of life and surgical rates after the treatment of adolescent idiopathic scoliosis. Spine Deform. 2019;7(3):417–427. doi:10.1016/j.jspd.2018.09.003
  • Weinstein SL, Zavala DC, Ponseti IV. Idiopathic scoliosis: long-term follow-up and prognosis in untreated patients. J Bone Joint Surg Am. 1981;63(5):702–712. doi:10.2106/00004623-198163050-00003
  • Asher MA, Burton DC. Adolescent idiopathic scoliosis: natural history and long term treatment effects. Scoliosis. 2006;1(1):2. doi:10.1186/1748-7161-1-2
  • Bridwell KH. Surgical treatment of idiopathic adolescent scoliosis. Spine (Phila Pa 1976). 1999;24(24):2607–2616. doi:10.1097/00007632-199912150-00008
  • Weiss HR, Goodall D. Rate of complications in scoliosis surgery - a systematic review of the PubMed literature. Scoliosis. 2008;3(1):9. doi:10.1186/1748-7161-3-9
  • Kim YJ, Lenke LG, Cho SK, et al. Comparative analysis of pedicle screw versus hook instrumentation in posterior spinal fusion of adolescent idiopathic scoliosis. Spine (Phila Pa 1976). 2004;29(18):2040–2048. doi:10.1097/01.brs.0000138268.12324.1a
  • Danielsson AJ, Romberg K, Nachemson AL. Spinal range of motion, muscle endurance, and back pain and function at least 20 years after fusion or brace treatment for adolescent idiopathic scoliosis: a case-control study. Spine. 2006;31(3):275–283. doi:10.1097/01.brs.0000197652.52890.71
  • Pahys JM, Samdani AF, Hwang SW, et al. Anterior vertebral body tethering for adolescent idiopathic scoliosis preserves trunk motion compared to posterior spinal fusion at two year follow-up. Scoliosis Research Society Annual Meeting. Virtual, Spine Deformity; 2020.
  • Helenius I, Remes V, Yrjönen T, et al. Comparison of long-term functional and radiologic outcomes after Harrington instrumentation and spondylodesis in adolescent idiopathic scoliosis: a review of 78 patients. Spine. 2002;27(2):176–180. doi:10.1097/00007632-200201150-00010
  • Padua R, Padua S, Aulisa L, et al. Patient outcomes after Harrington instrumentation for idiopathic scoliosis: a 15- to 28-year evaluation. Spine. 2001;26(11):1268–1273. doi:10.1097/00007632-200106010-00019
  • Haapala H, Saarinen AJ, Salonen A, et al. Shilla growth guidance compared with magnetically controlled growing rods in the treatment of neuromuscular and syndromic early-onset scoliosis. Spine. 2020;45(23):E1604–E1614. doi:10.1097/BRS.0000000000003654
  • Luhmann SJ, McCarthy RE. A comparison of shilla growth guidance system and growing rods in the treatment of spinal deformity in children less than 10 years of Age. J Pediatr Orthop. 2017;37(8):e567–e574. doi:10.1097/BPO.0000000000000751
  • Nazareth A, Skaggs DL, Illingworth KD, et al. Growth guidance constructs with apical fusion and sliding pedicle screws (SHILLA) results in approximately 1/3rd of normal T1-S1 growth. Spine Deform. 2020;8(3):531–535. doi:10.1007/s43390-020-00076-7
  • Bess S, Akbarnia BA, Thompson GH, et al. Complications of growing-rod treatment for early-onset scoliosis: analysis of one hundred and forty patients. JBJS. 2010;92(15):2533–2543. doi:10.2106/JBJS.I.01471
  • Myung KS, Skaggs DL, Thompson GH, et al. Nutritional improvement following growing rod surgery in children with early onset scoliosis. J Child Orthop. 2014;8(3):251–256. doi:10.1007/s11832-014-0586-z
  • Watanabe K, Uno K, Suzuki T, et al. Risk factors for complications associated with growing-rod surgery for early-onset scoliosis. Spine. 2013;38(8):E464–8. doi:10.1097/BRS.0b013e318288671a
  • Abdelaal A, Munigangaiah S, Trivedi J, et al. Magnetically controlled growing rods in the treatment of early onset scoliosis: a single centre experience of 44 patients with mean follow-up of 4.1 years. Bone Jt Open. 2020;1(7):405–414. doi:10.1302/2633-1462.17.BJO-2020-0099.R1
  • Akbarnia BA, Pawelek JB, Cheung KM, et al. Traditional growing rods versus magnetically controlled growing rods for the surgical treatment of early-onset scoliosis: a case-matched 2-year study. Spine Deform. 2014;2(6):493–497. doi:10.1016/j.jspd.2014.09.050
  • Arhewoh RE, Mo M, Luhmann SJ. Analysis of 280 magnetically controlled growing rod lengthenings comparing external remote control readouts and radiographic measurements: impact of patient and deformity factors. J Pediatr Orthop. 2021;41(2):e105–e110. doi:10.1097/BPO.0000000000001678
  • Calderaro C, Labianca L, Dolan LA, et al. Early-onset scoliosis treated with magnetically controlled growing rods. Orthopedics. 2020;43(6):e601–e608. doi:10.3928/01477447-20200910-04
  • Dragsted C, Fruergaard S, Jain MJ, et al. Distraction-to-stall versus targeted distraction in magnetically controlled growing rods. J Pediatr Orthop. 2020;40(9):e811–e817. doi:10.1097/BPO.0000000000001585
  • Gomez JA, Mackey C, Hanstein R et al.14th International congress on early onset scoliosis: November 14, 2020. Spine Deform. 2020;8(6):1389–1422. doi:10.1007/s43390-020-00234-x
  • Klyce W, Mitchell SL, Pawelek J, et al. Characterizing use of growth-friendly implants for early-onset scoliosis: a 10-year update. J Pediatr Orthop. 2020;40(8):e740–e746. doi:10.1097/BPO.0000000000001594
  • Lorenz HM, Hecker MM, Braunschweig L, et al. Continuous lengthening potential after four years of magnetically controlled spinal deformity correction in children with spinal muscular atrophy. Sci Rep. 2020;10(1):22420. doi:10.1038/s41598-020-79821-x
  • Obid P, Yiu K, Cheung K, et al. Magnetically controlled growing rods in early onset scoliosis: radiological results, outcome, and complications in a series of 22 patients. Arch Orthop Trauma Surg. 2020. doi:10.1007/s00402-020-03518-z
  • U.S. Food and Drug Administration, Office of Device Evaluation. SHILLA™ Growth guidance system approval letter; July 17, 2014. Available from: https://www.accessdata.fda.gov/cdrh_docs/pdf14/K140750.pdf. Accessed January14, 2021.
  • U.S. Food and Drug Administration, Office of Device Evaluation. MAGEC® Spinal bracing and distraction system approval letter; February 27, 2014. Available from: https://www.accessdata.fda.gov/cdrh_docs/pdf14/k140178.pdf. Accessed January 14, 2021.
  • Samdani AF, Ames RJ, Kimball JS, et al. Anterior vertebral body tethering for immature adolescent idiopathic scoliosis: one-year results on the first 32 patients. Eur Spine J. 2015;24(7):1533–1539. doi:10.1007/s00586-014-3706-z
  • Hoernschemeyer DG, Boeyer ME, Robertson ME, et al. Anterior vertebral body tethering for adolescent scoliosis with growth remaining: a retrospective review of 2 to 5-year postoperative results. J Bone Joint Surg Am. 2020;102(13):1169–1176. doi:10.2106/JBJS.19.00980
  • Newton PO, Bartley CE, Bastrom TP, et al. Anterior spinal growth modulation in skeletally immature patients with idiopathic scoliosis: a comparison with posterior spinal fusion at 2 to 5 years postoperatively. J Bone Joint Surg Am. 2020;102(9):769–777. doi:10.2106/JBJS.19.01176
  • Wong HK, Ruiz JNM, Newton PO, et al. Non-fusion surgical correction of thoracic idiopathic scoliosis using a novel, braided vertebral body tethering device: minimum follow-up of 4 years. JB JS Open Access. 2019;4(4):e0026. doi:10.2106/JBJS.OA.19.00026
  • Pehlivanoglu T, Oltulu I, Ofluoglu E, et al. Thoracoscopic vertebral body tethering for adolescent idiopathic scoliosis: a minimum of 2 years’ results of 21 patients. J Pediatr Orthop. 2020;40(10):575–580. doi:10.1097/BPO.0000000000001590
  • Zimmer Biomet. The Tether™ Vertebral body tethering system [Instructions for Use]. U.S. Food and Drug Administration website; June 2019. Available from: https://www.accessdata.fda.gov/cdrh_docs/pdf19/H190005D.pdf. Accessed October 26, 2020..
  • Ahmed SI, Bastrom TP, Yaszay B, et al. 5-year reoperation risk and causes for revision after idiopathic scoliosis surgery. Spine. 2017;42(13):999–1005. doi:10.1097/BRS.0000000000001968
  • Polly D Jr, Ackerman SJ, Schneider K, et al. Cost analysis of magnetically controlled growing rods compared with traditional growing rods for early-onset scoliosis in the US: an integrated health care delivery system perspective. Clinicoecon Outcomes Res. 2016;8:457–465. doi:10.2147/CEOR.S113633
  • Luhmann SJ, McAughey EM, Ackerman SJ, et al. Cost analysis of a growth guidance system compared with traditional and magnetically controlled growing rods for early-onset scoliosis: a US-based integrated health care delivery system perspective. Clinicoecon Outcomes Res. 2018;10:179–187. doi:10.2147/CEOR.S152892
  • Aghdasi B, Bachmann KR, Clark D, et al. Patient-reported outcomes following surgical intervention for adolescent idiopathic scoliosis: a systematic review and meta-analysis. Clin Spine Surg. 2020;33(1):24–34. doi:10.1097/BSD.0000000000000822
  • Baky FJ, Echternacht SR, Milbrandt TA, et al. Predictors of cost for posterior spinal fusion in adolescent idiopathic scoliosis. Spine Deform. 2020;8(3):421–426. doi:10.1007/s43390-020-00053-0
  • Jaquith BP, Chase A, Flinn P, et al. Screws versus hooks: implant cost and deformity correction in adolescent idiopathic scoliosis. J Child Orthop. 2012;6(2):137–143. doi:10.1007/s11832-012-0400-8
  • Malik AT, Yu E, Kim J, et al. Understanding costs in a 90-day episode of care following posterior spinal fusions for adolescent idiopathic scoliosis. World Neurosurg. 2019;130:e535–e541. doi:10.1016/j.wneu.2019.06.149
  • Workman JK, Wilkes J, Presson AP, et al. Variation in adolescent idiopathic scoliosis surgery: implications for improving healthcare value. J Pediatr. 2018;195:213–219.e3. doi:10.1016/j.jpeds.2017.12.031
  • Husereau D, Drummond M, Petrou S, et al. Consolidated Health Economic Evaluation Reporting Standards (CHEERS)–explanation and elaboration: a report of the ISPOR health economic evaluation publication guidelines good reporting practices task force. Value Health. 2013;16(2):231–250. doi:10.1016/j.jval.2013.02.002
  • The Institute For Clinical And Economic Review. 2020–2023 value assessment framework. Available from: https://icer-review.org/wp-content/uploads/2020/10/ICER_2020_2023_VAF_102220.pdf. Accessed October 6, 2020.
  • Marseille E, Larson B, Kazi DS, Kahn JG, Rosen S. Thresholds for the cost-effectiveness of interventions: alternative approaches. Bull World Health Organ. 2015;93(2):118–124. doi:10.2471/BLT.14.138206.
  • Wong CKH, Cheung PWH, Samartzis D, et al. Mapping the SRS-22r questionnaire onto the EQ-5D-5L utility score in patients with adolescent idiopathic scoliosis. PLoS One. 2017;12(4):e0175847. doi:10.1371/journal.pone.0175847
  • Kwan KYH, Koh HY, Blanke KM, et al. Complications following surgery for adolescent idiopathic scoliosis over a 13-year period. Bone Joint J. 2020;102B(4):519–523. doi:10.1302/0301-620X.102B4.BJJ-2019-1371.R1
  • Fiscal Year 2020 Medicare Inpatient Prospective Payment System, Final rule (CMS–1716-F) and correction notice (CMS-1716-CN2). Federal Register, August 16, 2019 and October 8, 2019.
  • Calendar Year 2020 Medicare Physician Fee Schedule, Final rule (CMS-1715-F) and correction notice (CMS-1715-CN). Federal Register, November 15, 2019 and January 2, 2020.
  • Andrew H. Briggs KC, Mark J. Sculpher. Decision Modelling for Health Economic Evaluation. 2nd ed. Oxford: Oxford University Press; 2006..
  • Newton PO, Kluck DG, Saito W, et al. Anterior spinal growth tethering for skeletally immature patients with scoliosis: a retrospective look two to four years postoperatively. J Bone Joint Surg Am. 2018;100(19):1691–1697. doi:10.2106/JBJS.18.00287
  • Kepler CK, Wilkinson SM, Radcliff KE, et al. Cost-utility analysis in spine care: a systematic review. Spine J. 2012;12(8):676–690. doi:10.1016/j.spinee.2012.05.011
  • Charroin C, Abelin-Genevois K, Cunin V, et al. Direct costs associated with the management of progressive early onset scoliosis: estimations based on gold standard technique or with magnetically controlled growing rods. Orthop Traumatol Surg Res. 2014;100(5):469–474. doi:10.1016/j.otsr.2014.05.006
  • Su AW, Milbrandt TA, Larson AN. Magnetic expansion control system achieves cost savings compared to traditional growth rods: an economic analysis model. Spine. 2015;40(23):1851–1856. doi:10.1097/BRS.0000000000001077
  • Sanders GD, Neumann PJ, Basu A, et al. Recommendations for conduct, methodological practices, and reporting of cost-effectiveness analyses: second panel on cost-effectiveness in health and medicine. JAMA. 2016;316(10):1093–1103. doi:10.1001/jama.2016.12195
  • Daubs MD, Hung M, Neese A, et al. Scoliosis research society-22 results in 3052 healthy adolescents aged 10 to 19 years. Spine. 2014;39(10):826–832. doi:10.1097/BRS.0000000000000280