89
Views
1
CrossRef citations to date
0
Altmetric
Perspectives

Implementation of comparative effectiveness research in personalized medicine applications in oncology: current and future perspectives

, , &
Pages 65-72 | Published online: 26 Nov 2015

References

  • Institute of Medicine (IOM). Initial National Priorities for Comparative Effectiveness Research. Washington, DC: The National Academies Press; 2009.
  • Annemans L, Redekop K, Payne K. Current methodological issues in the economic assessment of personalized medicine. Value Health. Sep 2013;16(6 Suppl):S20–S26.
  • Conti R, Veenstra DL, Armstrong K, Lesko LJ, Grosse SD. Personalized medicine and genomics: challenges and opportunities in assessing effectiveness, cost-effectiveness, and future research priorities. Med Decis Making. 2010;30(3):328–340.
  • Epstein R, Teagarden JR. Comparative effectiveness and personalized medicine: evolving together or apart? Health Aff (Millwood). 2010; 29(10):1783–1787.
  • Garber AM, Tunis SR. Does comparative-effectiveness research threaten personalized medicine? N Engl J Med. 2009;360(19):1925–1927.
  • Ramsey SD, Veenstra D, Tunis SR, Garrison L, Crowley JJ, Baker LH. How Comparative Effectiveness Research Can Help Advance “Personalized Medicine” In Cancer Treatment. Health Aff (Millwood). 2011;30(12):2259–2268.
  • Tuna M, Amos CI. Genomic sequencing in cancer. Cancer Lett. 2013;340(2):161–170.
  • Downing GJ. Key aspects of health system change on the path to personalized medicine. Transl Res. 2009;154(6):272–276.
  • Schleidgen S, Klingler C, Bertram T, Rogowski WH, Marckmann G. What is personalized medicine: sharpening a vague term based on a systematic literature review. BMC Med Ethics. 2013;14:55.
  • Rubin R. Precision medicine: the future or simply politics? JAMA. 2015;313(11):1089–1091.
  • Espinoza MA, Manca A, Claxton K, Sculpher MJ. The value of heterogeneity for cost-effectiveness subgroup analysis: conceptual framework and application. Med Decis Making. 2014;34(8):951–964.
  • Luce BR, Drummond M, Jönsson B, et al. EBM, HTA, and CER: clearing the confusion. Milbank Q. 2010;88(2):256–276.
  • Lyman GH, Hirsch B. Comparative effectiveness research and genomic personalized medicine. Personalized Medicine. 2010;7(3):223–227.
  • Petticrew M, Roberts H. Evidence, hierarchies, and typologies: horses for courses. J Epidemiol Community Health. 2003;57(7):527–529.
  • Fryback DG, Thornbury JR. The efficacy of diagnostic imaging. Med Decis Making. 1991;11(2):88–94.
  • Ginsburg GS, Kuderer NM. Comparative effectiveness research, genomics-enabled personalized medicine, and rapid learning health care: a common bond. J Clin Oncol. 2012;30(34):4233–4242.
  • Khoury MJ, Berg A, Coates R, Evans J, Teutsch SM, Bradley LA. The Evidence Dilemma In Genomic Medicine. Health Aff (Millwood). 2008;27(6):1600–1611.
  • Towse A, Garrison LP Jr. Economic incentives for evidence generation: promoting an efficient path to personalized medicine. Value Health. 2013;16(6 Suppl):S39–S43.
  • Deverka PA, Schully SD, Ishibe N, et al. Stakeholder assessment of the evidence for cancer genomic tests: insights from three case studies. Genet Med. 2012;14(7):656–662.
  • Phillips KA, Liang S-Y, van Bebber S; Canpers Research Group. Challenges to the translation of genomic information into clinical practice and health policy: Utilization, preferences and economic value. Curr Opin Mol Ther. 200810(3):260–266.
  • van Til JA, IJzerman MJ. Why Should Regulators Consider Using Patient Preferences in Benefit-risk Assessment? PharmacoEconomics. 2014;32(1):1–4.
  • Severin F, Schmidtke J, Mühlbacher A, Rogowski WH. Eliciting preferences for priority setting in genetic testing: a pilot study comparing best-worst scaling and discrete-choice experiments. Eur J Hum Genet. 2013;21(11):1202–1208.
  • Groothuis-Oudshoorn CG, Fermont JM, van Til JA, IJzerman MJ. Public stated preferences and predicted uptake for genome- based colorectal cancer screening. BMC Med Inform Decis Mak. 2014;14:18.
  • Printz C. I-SPY 2 may change how clinical trials are conducted. Cancer. 2013;119(11):1925–1927.
  • Barker AD, Sigman CC, Kelloff GJ, Hylton NM, Berry DA, Esserman LJ. I-SPY 2: An Adaptive Breast Cancer Trial Design in the Setting of Neoadjuvant Chemotherapy. Clin Pharmacol Ther. 2009; 86(1):97–100.
  • Schilsky RL. Personalized medicine in oncology: the future is now. Nat Rev Drug Discov. 2010;9(5):363–366.
  • Ligthart ST, Bidard FC, Decraene C, et al. Unbiased quantitative assessment of Her-2 expression of circulating tumor cells in patients with metastatic and non-metastatic breast cancer. Ann Oncol. 2013;24(5):1231–1238.
  • Mao C, Wu XY, Yang ZY, et al. Concordant analysis of KRAS, BRAF, PIK3CA mutations, and PTEN expression between primary colorectal cancer and matched metastases. Sci Rep. 2015;5:8065.
  • Magbanua MJ, Wolf DM, Yau C, et al. Serial expression analysis of breast tumors during neoadjuvant chemotherapy reveals changes in cell cycle and immune pathways associated with recurrence and response. Breast Cancer Res. 2015;17:73.
  • Nalejska E, Maczynska E, Lewandowska MA. Prognostic and predictive biomarkers: tools in personalized oncology. Mol Diagn Ther. 2014; 18(3):273–284.
  • Rubin DB. For objective causal inference, design trumps analysis. Annals of Applied Statistics. 2008;2(3):808–840.
  • Rubin DB. Causal Inference Using Potential Outcomes. Journal of the American Statistical Association. 2005;100(469):322–331.
  • Ma J, Hobbs BP, Stingo FC. Statistical methods for establishing personalized treatment rules in oncology. BioMed Research International. Epub 2015 Feb 9.
  • Murphy SA. Optimal dynamic treatment regimes. J Royal Statistical Soc B. 2003;65(2):331–366.
  • Lavori PW, Dawson R. Dynamic treatment regimes: practical design considerations. Clin Trials. 2004;1(1):9–20.
  • Chakraborty B, Murphy SA. Dynamic Treatment Regimes. Annu Rev Stat Appl. 2014;1:447–464.
  • Corander J, Aittokallio T, Ripatti S, Kaski S. The rocky road to personalized medicine: computational and statistical challenges. Personalized Medicine. 2012;9(2):109–114.
  • Ramsey SD, Barlow WE, Gonzalez-Angulo AM, et al. Integrating comparative effectiveness design elements and endpoints into a phase III, randomized clinical trial (SWOG S1007) evaluating oncotypeDX-guided management for women with breast cancer involving lymph nodes. Contemporary Clinical Trials. 2013;34(1):1–9.
  • Leunis A, Redekop WK, van Montfort KA, Löwenberg B, Uyl-de Groot CA. The development and validation of a decision-analytic model representing the full disease course of acute myeloid leukemia. Pharmacoeconomics. 2013;31(7):605–621.
  • Collins B. Big Data and Health Economics: Strengths, Weaknesses, Opportunities and Threats. Pharmacoeconomics. Epub 2015 Jun 21.
  • Pollack CE, Lemke KW, Roberts E, Weiner JP. Patient sharing and quality of care: measuring outcomes of care coordination using claims data. Med Care. 2015;53(4):317–323.
  • Crown WH. Potential application of machine learning in health outcomes research and some statistical cautions. Value Health. 2015;18(2):137–140.
  • Giordano SH. Comparative effectiveness research in cancer with observational data. Am Soc Clin Oncol Educ Book. 2015;35:e330–e335.
  • Baker SG, Kramer BS, Lindeman KS. Latent class instrumental variables: a clinical and biostatistical perspective. Stat Med. Epub 2015 Aug 4.
  • Marshall DA, Burgos-Liz L, IJzerman MJ, et al. Applying Dynamic Simulation Modeling Methods in Health Care Delivery Research-The SIMULATE Checklist: Report of the ISPOR Simulation Modeling Emerging Good Practices Task Force. Value Health. 2015;18(1):5–16.
  • Marshall DA, Burgos-Liz L, IJzerman MJ, et al. Selecting a Dynamic Simulation Modeling Method for Health Care Delivery Research-Part 2: Report of the ISPOR Dynamic Simulation Modeling Emerging Good Practices Task Force. Value Health. 2015;18(2):147–160.