247
Views
37
CrossRef citations to date
0
Altmetric
Original Research

Changes in the blood antioxidant defense of advanced age people

, , &
Pages 763-771 | Published online: 01 May 2019

References

  • Amalberti, R, Vincent C, Nicklin W,  Braithwaite J. Coping with more people with more illness. Part 1: the nature of the challenge and the implications for safety and quality. Int J Qual Health Care. 2018;31(2):154–158. doi:10.1093/intqhc/mzy235
  • Christensen K, Doblhammer G, Rau R, Vaupel JW. Ageing populations: the challenges ahead. Lancet. 2009;374(9696):1196–1208. doi:10.1016/S0140-6736(09)61460-419801098
  • Reeves D, Pye S, Ashcroft DM, et al. The challenge of ageing populations and patient frailty: can primary care adapt? BMJ. 2018;362:k3349. doi:10.1136/bmj.k334930154082
  • Abbing HR. Health, healthcare and ageing populations in Europe, a human rights challenge for European health systems. Eur J Health Law. 2016;23(5):435–452.29210245
  • Ana Isabel CM, Francisco Ignacio J-R, Margarita R-K, Gill SS, Alicia B-F, Juan Francisco J-B. Down-regulation of arginine decarboxylase gene-expression results in reactive oxygen species accumulation in Arabidopsis. Biochem Biophys Res Commun. 2018;506(4):1071–1077. doi:10.1016/j.bbrc.2018.10.16530409429
  • Jardeleza C, Jones D, Baker L, et al. Gene expression differences in nitric oxide and reactive oxygen species regulation point to an altered innate immune response in chronic rhinosinusitis. Int Forum Allergy Rhinol. 2013;3(3):193–198. doi:10.1002/alr.2111423136082
  • San Martin A, Du P, Dikalova A, et al. Reactive oxygen species-selective regulation of aortic inflammatory gene expression in type 2 diabetes. Am J Physiol Heart Circ Physiol. 2007;292(5):H2073–82. doi:10.1152/ajpheart.00943.200617237245
  • Akram S, Teong HFC, Fliegel L, Pervaiz S, Clément M-V. Reactive oxygen species-mediated regulation of the Na+-H+ exchanger 1 gene expression connects intracellular redox status with cells‘ sensitivity to death triggers. Cell Death Differ. 2006;13(4):628–641. doi:10.1038/sj.cdd.440177516179939
  • Turpaev KT. Reactive oxygen species and regulation of gene expression. Biochemistry (Mosc). 2002;67(3):281–292.11970728
  • Ikeno Y. New insights and current concepts of the oxidative stress theory of aging. Arch Biochem Biophys. 2015;576:1. doi:10.1016/j.abb.2015.03.01925823831
  • Durackova Z. Some current insights into oxidative stress. Physiol Res. 2010;59(4):459–469.19929132
  • Li Y, Nishimura T, Teruya K, et al. Protective mechanism of reduced water against alloxan-induced pancreatic beta-cell damage: scavenging effect against reactive oxygen species. Cytotechnology. 2002;40(1–3):139–149. doi:10.1023/A:102393642144819003114
  • Yu BP. Cellular defenses against damage from reactive oxygen species. Physiol Rev. 1994;74(1):139–162. doi:10.1152/physrev.1994.74.1.1398295932
  • Roy J, Galano J-M, Durand T, Le Guennec J-Y, Lee JC-Y. Physiological role of reactive oxygen species as promoters of natural defenses. FASEB J. 2017;31(9):3729–3745. doi:10.1096/fj.201700170R28592639
  • Barouki R. [Ageing free radicals and cellular stress]. Med Sci (Paris). 2006;22(3):266–272. doi:10.1051/medsci/200622326616527207
  • Poon HF, Calabrese V, Scapagnini G, Butterfield DA. Free radicals: key to brain aging and heme oxygenase as a cellular response to oxidative stress. J Gerontol A Biol Sci Med Sci. 2004;59(5):478–493.15123759
  • Trifunovic A, Wredenberg A, Falkenberg M, et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature. 2004;429(6990):417–423. doi:10.1038/nature0251715164064
  • Kujoth GC, Hiona A, Pugh TD, et al. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science. 2005;309(5733):481–484. doi:10.1126/science.111212516020738
  • Terzioglu M, Larsson NG. Mitochondrial dysfunction in mammalian ageing. Novartis Found Symp. 2007;287:197–208. discussion 208–13.18074640
  • Yamasoba T, Lin FR, Someya S, Kashio A, Sakamoto T, Kondo K. Current concepts in age-related hearing loss: epidemiology and mechanistic pathways. Hear Res. 2013;303:30–38. doi:10.1016/j.heares.2013.01.02123422312
  • Bardyn M, Rappaz B, Jaferzadeh K, et al. Red blood cells ageing markers: a multi-parametric analysis. Blood Transfus. 2017;15(3):239–248. doi:10.2450/2017.0318-1628518051
  • Zs-Nagy I. Aging of cell membranes: facts and theories. Interdiscip Top Gerontol. 2014;39:62–85. doi:10.1159/00035890024862015
  • Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44–84. doi:10.1016/j.biocel.2006.07.00116978905
  • Reisz JA, Wither MJ, Dzieciatkowska M, et al. Oxidative modifications of glyceraldehyde 3-phosphate dehydrogenase regulate metabolic reprogramming of stored red blood cells. Blood. 2016;128(12):e32–42. doi:10.1182/blood-2016-05-71481627405778
  • Dobi A, Bravo SB, Veeren B, et al. Advanced glycation end-products disrupt human endothelial cells redox homeostasis: new insights into reactive oxygen species production. Free Radic Res. 2019;1–20. doi:10.1080/10715762.2018.1529866
  • Vassallo DV, Wiggers GA, Padilha AS, RonacherSimões M. Endothelium:atarget for harmful actions of metals. Curr Hypertens Rev. 2019. doi:10.2174/1573402115666190115153759
  • Park SY, Kentish SJ, Wittert GA, Page AJ. Age-related endothelial dysfunction in human skeletal muscle feed arteries: the role of free radicals derived from mitochondria in the vasculature. Acta Physiol (Oxf). 2018;222(1). doi:10.1111/apha.12884
  • Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol. 1956;11(3):298–300.13332224
  • Muller FL, Lustgarten MS, Jang Y, Richardson A, Van Remmen H. Trends in oxidative aging theories. Free Radic Biol Med. 2007;43(4):477–503. doi:10.1016/j.freeradbiomed.2007.03.03417640558
  • Perez VI, Bokov A, Van Remmen H, et al. Is the oxidative stress theory of aging dead? Biochim Biophys Acta. 2009;1790(10):1005–1014. doi:10.1016/j.bbagen.2009.06.00319524016
  • Singh S, Singh AK, Garg G, Rizvi SI. Fisetin as a caloric restriction mimetic protects rat brain against aging induced oxidative stress, apoptosis and neurodegeneration. Life Sci. 2018;193:171–179. doi:10.1016/j.lfs.2017.11.00429122553
  • Zanetti M, Gortan Cappellari G, Burekovic I, Barazzoni R, Stebel M, Guarnieri G. Caloric restriction improves endothelial dysfunction during vascular aging: effects on nitric oxide synthase isoforms and oxidative stress in rat aorta. Exp Gerontol. 2010;45(11):848–855. doi:10.1016/j.exger.2010.07.00220637278
  • Sohal RS, Weindruch R. Oxidative stress, caloric restriction, and aging. Science. 1996;273(5271):59–63.8658196
  • Moore A. A new theory of aging based on energy maintenance. Bioessays. 2018;40(8):e1800124. doi:10.1002/bies.v40.830009458
  • Chaudhari SN, Kipreos ET. The energy maintenance theory of aging: maintaining energy metabolism to allow longevity. Bioessays. 2018;40(8):e1800005. doi:10.1002/bies.v40.829901833
  • Cabello-Verrugio C, Vilos C, Rodrigues-Diez R, Estrada L. Oxidative stress in disease and aging: mechanisms and therapies 2018. Oxid Med Cell Longev. 2018;2018:2835189. doi:10.1155/2018/283518930344885
  • Liguori I, Russo G, Curcio F, et al. Oxidative stress, aging, and diseases. Clin Interv Aging. 2018;13:757–772. doi:10.2147/CIA.S15851329731617
  • Simioni C, Zauli G, Martelli AM, et al. Oxidative stress: role of physical exercise and antioxidant nutraceuticals in adulthood and aging. Oncotarget. 2018;9(24):17181–17198. doi:10.18632/oncotarget.2472929682215
  • Pesce M, Tatangelo R, La Fratta I, et al. Aging-related oxidative stress: positive effect of memory training. Neuroscience. 2018;370:246–255. doi:10.1016/j.neuroscience.2017.09.04628987510
  • Eleutherio E, Brasil ADA, França MB, de Almeida DSG, Rona GB, Magalhães RSS. Oxidative stress and aging: learning from yeast lessons. Fungal Biol. 2018;122(6):514–525. doi:10.1016/j.funbio.2017.12.00329801796
  • Lee JY, Paik IY, Kim JY. Voluntary exercise reverses immune aging induced by oxidative stress in aging mice. Exp Gerontol. 2019;115:148–154. doi:10.1016/j.exger.2018.08.009
  • Zhou HJ, Zeng C-Y, Yang -T-T, Long F-Y, Kuang X, Du J-R. Lentivirus-mediated klotho up-regulation improves aging-related memory deficits and oxidative stress in senescence-accelerated mouse prone-8 mice. Life Sci. 2018;200:56–62. doi:10.1016/j.lfs.2018.03.02729544758
  • Kirkwood TB, Kowald A. The free-radical theory of ageing–older, wiser and still alive: modelling positional effects of the primary targets of ROS reveals new support. Bioessays. 2012;34(8):692–700. doi:10.1002/bies.20120001422641614
  • Pomatto LCD, Davies KJA. Adaptive homeostasis and the free radical theory of ageing. Free Radic Biol Med. 2018;124:420–430. doi:10.1016/j.freeradbiomed.2018.06.01629960100
  • Placer ZA, Cushman LL, Johnson BC. Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Anal Biochem. 1966;16(2):359–364.6007581
  • Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem. 1972;247(10):3170–3175.4623845
  • Beers RF Jr., Sizer IW. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem. 1952;195(1):133–140.14938361
  • Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med. 1967;70(1):158–169.6066618
  • Flohe L, Gunzler WA. Assays of glutathione peroxidase. Methods Enzymol. 1984;105:114–121.6727659
  • Roth E, Hejjel L, Jaberansari M, Jancso G. The role of free radicals in endogenous adaptation and intracellular signals. Exp Clin Cardiol. 2004;9(1):13–16.19641690
  • Terashvili M, Pratt PF, Gebremedhin D, Narayanan J, Harder DR. Reactive oxygen species cerebral autoregulation in health and disease. Pediatr Clin North Am. 2006;53(5):1029–37.xi. doi:10.1016/j.pcl.2006.08.00317027622
  • Afanas‘Ev IB. On mechanism of superoxide signaling under physiological and pathophysiological conditions. Med Hypotheses. 2005;64(1):127–129. doi:10.1016/j.mehy.2004.05.00915533629
  • Forman HJ. Redox signaling: an evolution from free radicals to aging. Free Radic Biol Med. 2016;97:398–407. doi:10.1016/j.freeradbiomed.2016.07.00327393004
  • Kasapoglu M, Ozben T. Alterations of antioxidant enzymes and oxidative stress markers in aging. Exp Gerontol. 2001;36(2):209–220.11226737
  • Inal ME, Kanbak G, Sunal E. Antioxidant enzyme activities and malondialdehyde levels related to aging. Clin Chim Acta. 2001;305(1–2):75–80.11249925
  • Sohal RS. Role of oxidative stress and protein oxidation in the aging process. Free Radic Biol Med. 2002;33(1):37–44.12086680
  • Sato M, Yanagisawa H, Nojima Y, Tamura J, Wada O. Zn deficiency aggravates hypertension in spontaneously hypertensive rats: possible role of Cu/Zn-superoxide dismutase. Clin Exp Hypertens. 2002;24(5):355–370.12109776
  • Holben DH, Smith AM. The diverse role of selenium within selenoproteins: a review. J Am Diet Assoc. 1999;99(7):836–843. doi:10.1016/S0002-8223(99)00198-410405682
  • Maharaj DS, Glass BD, Daya S. Melatonin: new places in therapy. Biosci Rep. 2007;27(6):299–320. doi:10.1007/s10540-007-9052-117828452
  • Yanar K, Simsek B, Cakatay U. Integration of melatonin related redox homeostasis, aging and circadian rhythm. Rejuvenation Res. 2018. doi:10.1089/rej.2018.2159
  • Yang Y, Cheung -H-H, Zhang C, Wu J, Chan W-Y. Melatonin as potential targets for delaying ovarian aging. Curr Drug Targets. 2019;20(1):16–28. doi:10.2174/138945011966618082814484330156157
  • Marzani B, Felzani G, Bellomo RG, Vecchiet J, Marzatico F. Human muscle aging: ROS-mediated alterations in rectus abdominis and vastus lateralis muscles. Exp Gerontol. 2005;40(12):959–965. doi:10.1016/j.exger.2005.08.01016213688
  • Al-Abrash AS, Al-Quobaili FA, Al-Akhras GN. Catalase evaluation in different human diseases associated with oxidative stress. Saudi Med J. 2000;21(9):826–830.11376358
  • Flores-Mateo G, Elosua R, Rodriguez-Blanco T, et al. Oxidative stress is associated with an increased antioxidant defense in elderly subjects: a multilevel approach. PLoS One. 2014;9(9):e105881. doi:10.1371/journal.pone.010588125269026
  • Klapcinska B, Derejczyk J, Wieczorowska-Tobis K, Sobczak A, Sadowska-Krepa E, Danch A. Antioxidant defense in centenarians (a preliminary study). Acta Biochim Pol. 2000;47(2):281–292.11051193
  • Spiteller G. The important role of lipid peroxidation processes in aging and age dependent diseases. Mol Biotechnol. 2007;37(1):5–12.17914157
  • Spiteller G. Lipid peroxidation in aging and age-dependent diseases. Exp Gerontol. 2001;36(9):1425–1457.11525868
  • Girotti AW. Lipid hydroperoxide generation, turnover, and effector action in biological systems. J Lipid Res. 1998;39(8):1529–1542.9717713
  • Yavuzer H, Yavuzer S, Cengiz M, et al. Biomarkers of lipid peroxidation related to hypertension in aging. Hypertens Res. 2016;39(5):342–348. doi:10.1038/hr.2015.15626763852
  • Pratico D. Lipid peroxidation and the aging process. Sci Aging Knowledge Environ. 2002;2002(50):re5.14603026
  • Salminen LE, Paul RH. Oxidative stress and genetic markers of suboptimal antioxidant defense in the aging brain: a theoretical review. Rev Neurosci. 2014;25(6):805–819. doi:10.1515/revneuro-2014-004625153586