138
Views
0
CrossRef citations to date
0
Altmetric
Review

Contextual Processing and the Impacts of Aging and Neurodegeneration: A Scoping Review

ORCID Icon, , & ORCID Icon
Pages 345-361 | Published online: 24 Feb 2021

References

  • Hasher L, Zacks RT. Working memory, comprehension, and aging: a review and a new view. Psychol LearningMotivation. 1988;Jan(22):193–225.
  • Bäckman L, Jones S, Berger AK, Laukka EJ, Small BJ. Multiple cognitive deficits during the transition to Alzheimer’s disease. J Intern Med. 2004;256(3):195–204. doi:10.1111/j.1365-2796.2004.01386.x15324363
  • Perry RJ, Hodges JR. Attention and executive deficits in Alzheimer’s disease: a critical review. Brain. 1999;122(3):383–404. doi:10.1093/brain/122.3.38310094249
  • Barch DM, Carter CS, Braver TS, et al. Selective deficits in prefrontal cortex function in medication-naive patients with schizophrenia. Arch Gen Psychiatry. 2001;58(3):280–288. doi:10.1001/archpsyc.58.3.28011231835
  • Cohen JD, Servan-Schreiber D. Context, cortex, and dopamine: a connectionist approach to behavior and biology in schizophrenia. Psychol Rev. 1992;99(1):45. doi:10.1037/0033-295X.99.1.451546118
  • Kirova AM, Bays RB, Lagalwar S. Working memory and executive function decline across normal aging, mild cognitive impairment, and Alzheimer’s disease. Biomed Res Int. 2015;15:2015.
  • Pompili M, Innamorati M, Lamis DA, et al. The associations among childhood maltreatment, “male depression” and suicide risk in psychiatric patients. Psychiatry Res. 2014;220(1–2):571–578. doi:10.1016/j.psychres.2014.07.05625169890
  • Serafini G, Gonda X, Canepa G, et al. Extreme sensory processing patterns show a complex association with depression, and impulsivity, alexithymia, and hopelessness. J Affect Disord. 2017;1(210):249–257. doi:10.1016/j.jad.2016.12.019
  • Payne BR, Silcox JW. Aging, context processing, and comprehension. In: Psychology of Learning and Motivation. Vol. 71. Academic Press; 2019:215–264.
  • Schmitt H, Ferdinand NK, Kray J. Age-differential effects on updating cue information: evidence from event-related potentials. Cogn Affect Behav Neurosci. 2014;14(3):1115–1131. doi:10.3758/s13415-014-0268-924590394
  • Braver TS, Barch DM. A theory of cognitive control, aging cognition, and neuromodulation. Neurosci Biobehav Rev. 2002;26(7):809–817. doi:10.1016/S0149-7634(02)00067-212470692
  • Fogelson N. Neural correlates of local contextual processing across stimulus modalities and patient populations. Neurosci Biobehav Rev. 2015;1(52):207–220.
  • Ghosh Hajra S, Liu CC, Song X, et al. Developing brain vital signs: initial framework for monitoring brain function changes over time. Front Neurosci. 2016;12(10):211.
  • Hajra SG, Liu CC, Song X, et al. Accessing knowledge of the ‘here and now’: a new technique for capturing electromagnetic markers of orientation processing. J Neural Eng. 2018;16(1):016008. doi:10.1088/1741-2552/aae91e30507557
  • Hajra SG, Gopinath S, Liu CC, et al. Enabling event-related potential assessments using low-density electrode arrays: a new technique for denoising individual channel EEG data. In 2020 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS) 2020 99. (pp. 1–7). IEEE.
  • Braver TS, Gray JR, Burgess GC. Explaining the many varieties of working memory variation: dual mechanisms of cognitive control. Variation Working Memory. 2007;3(75):106.
  • Braver TS. The variable nature of cognitive control: a dual mechanisms framework. Trends Cogn Sci. 2012;16(2):106–113. doi:10.1016/j.tics.2011.12.01022245618
  • De Pisapia N, Braver TS. A model of dual control mechanisms through anterior cingulate and prefrontal cortex interactions. Neurocomputing. 2006;69(10–12):1322–1326. doi:10.1016/j.neucom.2005.12.100
  • Mesulam MM. From sensation to cognition. Brain. 1998;121(6):1013–1052. doi:10.1093/brain/121.6.10139648540
  • Huettel SA, Song AW, McCarthy G. Decisions under uncertainty: probabilistic context influences activation of prefrontal and parietal cortices. J Neurosci. 2005;25(13):3304–3311. doi:10.1523/JNEUROSCI.5070-04.200515800185
  • MacDonald AW, Cohen JD, Stenger VA, Carter CS. Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science. 2000;288(5472):1835–1838. doi:10.1126/science.288.5472.183510846167
  • Miller EK, Cohen JD. An integrative theory of prefrontal cortex function. Annu Rev Neurosci. 2001;24(1):167–202. doi:10.1146/annurev.neuro.24.1.16711283309
  • MacDonald III AW, Carter CS, Kerns JG, et al. Specificity of prefrontal dysfunction and context processing deficits to schizophrenia in never-medicated patients with first-episode psychosis. Am J Psychiatry. 2005;162(3):475–484. doi:10.1176/appi.ajp.162.3.47515741464
  • Fogelson N, Wang X, Lewis JB, et al. Multimodal effects of local context on target detection: evidence from P3b. J Cogn Neurosci. 2009;21(9):1680–1692. doi:10.1162/jocn.2009.2107118702574
  • Fogelson N, Li L, Li Y, et al. Functional connectivity abnormalities during contextual processing in schizophrenia and in Parkinson’s disease. Brain Cong. 2013;82(3):243–253. doi:10.1016/j.bandc.2013.05.001
  • Barch DM, Braver TS, Nystrom LE, et al. Dissociating working memory from task difficulty in human prefrontal cortex. Neuropsychologia. 1997;35(10):1373–1380. doi:10.1016/S0028-3932(97)00072-99347483
  • Polich J, Criado JR. Neuropsychology and neuropharmacology of P3a and P3b. Int J Psychophysiol. 2006;60(2):172–185.16510201
  • Poulsen C, Luu P, Davey C, Tucker DM. Dynamics of task sets: evidence from dense-array event-related potentials. Cong Brain Res. 2005;24(1):133–154. doi:10.1016/j.cogbrainres.2005.01.008
  • Squires KC, Wickens C, Squires NK, Donchin E. The effect of stimulus sequence on the waveform of the cortical event-related potential. Science. 1976;193(4258):1142–1146. doi:10.1126/science.959831959831
  • Squires KC, Squires NK, Hillyard SA. Decision-related cortical potentials during an auditory signal detection task with cued observation intervals. J Exp Psychol Hum Percept Perform. 1975;1(3):268. doi:10.1037/0096-1523.1.3.2681202150
  • Polich J, editor. Detection of Change: Event-Related Potential and fMRI Findings. Norwell, MA: Kluwer Academic Publishers; 2003.
  • Verleger R. Event-related potentials and cognition: a critique of the context updating hypothesis and an alternative interpretation of P3. Behav Brain Sci. 1988;11(3):343–356. doi:10.1017/S0140525X00058015
  • Chao LL, Nielsen-Bohlman L, Knight RT. Auditory event-related potentials dissociate early and late memory processes. Electroencephalogr Clin Neurophysiol. 1995;96(2):157–168. doi:10.1016/0168-5597(94)00256-E7535221
  • Squires KC, Hillyard SA, Lindsay PH. Vertex potentials evoked during auditory signal detection: relation to decision criteria. Percept Psychophys. 1973;14(2):265–272. doi:10.3758/BF3212388
  • Johnson R. A triarchic model of P300 amplitude. Psychophysiology. 1986. doi:10.1111/j.1469-8986.1986.tb00649.x
  • Kok A. On the utility of P3 amplitude as a measure of processing capacity. Psychophysiology. 2001;38(3):557–577. doi:10.1017/S004857720199055911352145
  • Duncan‐Johnson CC. Young Psychophysiologist Award Address, 1980: P300 latency: a new metric of information processing. Psychophysiology. 1981;18(3):207–215. doi:10.1111/j.1469-8986.1981.tb03020.x7291436
  • Hillyard SA, Kutas M. Electrophysiology of cognitive processing. Ann Rev Psychol. 1983;34(1):33–61. doi:10.1146/annurev.ps.34.020183.0003416338812
  • Kutas M, McCarthy G, Donchin E. Augmenting mental chronometry: the P300 as a measure of stimulus evaluation time. Science. 1977;197(4305):792–795. doi:10.1126/science.887923887923
  • Verleger R, Jaśkowski P, Wascher E. Evidence for an integrative role of P3b in linking reaction to perception. J Psychophysiol. 2005;19(3):165–181. doi:10.1027/0269-8803.19.3.165
  • Duncan CC, Barry RJ, Connolly JF, et al. Event-related potentials in clinical research: guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400. Clin Neurophysiol. 2009;120(11):1883–1908.19796989
  • Dias EC, Butler PD, Hoptman MJ, Javitt DC. Early sensory contributions to contextual encoding deficits in schizophrenia. Arch Gen Psychiatry. 2011;68(7):654–664. doi:10.1001/archgenpsychiatry.2011.1721383251
  • Folstein JR, Van Petten C. Influence of cognitive control and mismatch on the N2 component of the ERP: a review. Psychophysiology. 2008;45(1):152–170. doi:10.1111/j.1469-8986.2007.00602.x17850238
  • Nieuwenhuis S, Yeung N, Van Den Wildenberg W, Ridderinkhof KR. Electrophysiological correlates of anterior cingulate function in a go/no-go task: effects of response conflict and trial type frequency. Cong Affect Behav Neurosci. 2003;3(1):17–26. doi:10.3758/CABN.3.1.17
  • Kray J, Eppinger B, Mecklinger A. Age differences in attentional control: an event‐related potential approach. Psychophysiology. 2005;42(4):407–416. doi:10.1111/j.1469-8986.2005.00298.x16008769
  • Damen EJ, Brunia CH. Is a stimulus conveying task‐relevant information a sufficient condition to elicit a stimulus‐preceding negativity? Psychophysiology. 1994;31(2):129–139. doi:10.1111/j.1469-8986.1994.tb01033.x8153249
  • Gomez CM, Marco J, Grau C. Preparatory visuo-motor cortical network of the contingent negative variation estimated by current density. Neuroimage. 2003;20(1):216–224. doi:10.1016/S1053-8119(03)00295-714527582
  • Gratton G, Coles MG, Sirevaag EJ, Eriksen CW, Donchin E. Pre-and poststimulus activation of response channels: a psychophysiological analysis. J Exp Psychol Hum Percept Perform. 1988;14(3):331. doi:10.1037//0096-1523.14.3.3312971764
  • Praamstra P. Prior information of stimulus location: effects on ERP measures of visual selection and response selection. Brain Res. 2006;1072(1):153–160. doi:10.1016/j.brainres.2005.11.09816406014
  • Polizzotto NR, Hill-Jarrett T, Walker C, Cho RY. Normal development of context processing using the AXCPT paradigm. PLoS One. 2018;13(5):e0197812. doi:10.1371/journal.pone.019781229852005
  • Cohen JD, Barch DM, Carter CS, Servan-Schreiber D. Schizophrenic deficits in the processing of context: converging evidence from three theoretically motivated cognitive tasks. J Abnorm Psychol. 1999;108(1):120–133. doi:10.1037/0021-843X.108.1.12010066998
  • Daigneault S, Braün CM, Whitaker HA. An empirical test of two opposing theoretical models of prefrontal function. Brain Cogn. 1992;19(1):48–71. doi:10.1016/0278-2626(92)90037-M1605950
  • Hartman M, Hasher L. Aging and suppression: memory for previously relevant information. Psychol Aging. 1991;6(4):587. doi:10.1037/0882-7974.6.4.5871777147
  • Williams BR, Ponesse JS, Schachar RJ, Logan GD, Tannock R. Development of inhibitory control across the life span. Dev Psychol. 1999;35(1):205. doi:10.1037/0012-1649.35.1.2059923475
  • Casey BJ, Castellanos FX, Giedd JN, et al. Implication of right frontostriatal circuitry in response inhibition and attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry. 1997;36(3):374–383. doi:10.1097/00004583-199703000-000169055518
  • Wylie GR, Javitt DC, Foxe JJ. Task switching: a high-density electrical mapping study. Neuroimage. 2003;20(4):2322–2342. doi:10.1016/j.neuroimage.2003.08.01014683733
  • Mancini C, Modugno N, Santilli M, et al. Unilateral stimulation of subthalamic nucleus does not affect inhibitory control. Front Neurol. 2019;7(9):1149. doi:10.3389/fneur.2018.01149
  • Lehle C, Hübner R. On-the-fly adaptation of selectivity in the flanker task. Psychon Bull Rev. 2008;15(4):814–818. doi:10.3758/PBR.15.4.81418792509
  • West R, Bowry R, McConville C. Sensitivity of medial frontal cortex to response and nonresponse conflict. Psychophysiology. 2004;41(5):739–748. doi:10.1111/j.1469-8986.2004.00205.x15318880
  • Escera C, Alho K, Winkler I, Näätänen R. Neural mechanisms of involuntary attention to acoustic novelty and change. J Cogn Neurosci. 1998;10(5):590–604. doi:10.1162/0898929985629979802992
  • Trewartha KM, Penhune VB, Li KZ. Movement kinematics of prepotent response suppression in aging during conflict adaptation. J Gerontol Ser B. 2011;66(2):185–194. doi:10.1093/geronb/gbq090
  • Van der Lubbe RH, Verleger R. Aging and the Simon task. Psychophysiology. 2002;39(1):100–110. doi:10.1111/1469-8986.391010012206290
  • Hemsley DR. The schizophrenic experience: taken out of context? Schizophr Bull. 2005;31(1):43–53. doi:10.1093/schbul/sbi00315888424
  • Baddeley A. The episodic buffer: a new component of working memory? Trends Cogn Sci. 2000;4(11):417–423. doi:10.1016/S1364-6613(00)01538-211058819
  • Fogelson N, Shah M, Bonnet-Brilhault F, Knight RT. Electrophysiological evidence for aging effects on local contextual processing. Cortex. 2010;46(4):498–506. doi:10.1016/j.cortex.2009.05.00719559410
  • Gaeta H, Friedman D, Hunt G. Stimulus characteristics and task category dissociate the anterior and posterior aspects of the novelty P3. Psychophysiology. 2003;40(2):198–208. doi:10.1111/1469-8986.0002212820861
  • Hohnsbein J, Falkenstein M, Hoormann J, Blanke L. Effects of crossmodal divided attention on late ERP components. I. Simple and choice reaction tasks. Electroencephalogr Clin Neurophysiol. 1991;78(6):438–446. doi:10.1016/0013-4694(91)90061-81712279
  • Fjell AM, Walhovd KB. Life‐span changes in P3a. Psychophysiology. 2004;41(4):575–583. doi:10.1111/j.1469-8986.2004.00177.x15189480
  • Wetzel N, Schröger E. Cognitive control of involuntary attention and distraction in children and adolescents. Brain Res. 2007;25(1155):134–146. doi:10.1016/j.brainres.2007.04.022
  • Hämmerer D, Li SC, Müller V, Lindenberger U. An electrophysiological study of response conflict processing across the lifespan: assessing the roles of conflict monitoring, cue utilization, response anticipation, and response suppression. Neuropsychologia. 2010;48(11):3305–3316. doi:10.1016/j.neuropsychologia.2010.07.01420638396
  • West R, Schwarb H. The influence of aging and frontal function on the neural correlates of regulative and evaluative aspects of cognitive control. Neuropsychology. 2006;20(4):468. doi:10.1037/0894-4105.20.4.46816846265
  • Rae CL, Hughes LE, Anderson MC, Rowe JB. The prefrontal cortex achieves inhibitory control by facilitating subcortical motor pathway connectivity. J Neurosci. 2015;35(2):786–794. doi:10.1523/JNEUROSCI.3093-13.201525589771
  • Steele VR, Aharoni E, Munro GE, et al. A large scale (N= 102) functional neuroimaging study of response inhibition in a Go/NoGo task. Behav Brain Res. 2013;1(256):529–536. doi:10.1016/j.bbr.2013.06.001
  • Manard M, François S, Phillips C, Salmon E, Collette F. The neural bases of proactive and reactive control processes in normal aging. Behav Brain Res. 2017;1(320):504–516. doi:10.1016/j.bbr.2016.10.026
  • Botvinick MM, Braver TS, Barch DM, Carter CS, Cohen JD. Conflict monitoring and cognitive control. Psychol Rev. 2001;108(3):624. doi:10.1037/0033-295X.108.3.62411488380
  • Egner T, Hirsch J. Cognitive control mechanisms resolve conflict through cortical amplification of task-relevant information. Nat Neurosci. 2005;8(12):1784–1790. doi:10.1038/nn159416286928
  • Paxton JL, Barch DM, Racine CA, Braver TS. Cognitive control, goal maintenance, and prefrontal function in healthy aging. Cereb Cortex. 2008;18(5):1010–1028. doi:10.1093/cercor/bhm13517804479
  • Bugg JM. Evidence for the sparing of reactive cognitive control with age. Psychol Aging. 2014;29(1):115. doi:10.1037/a003527024378111
  • Rush BK, Barch DM, Braver TS. Accounting for cognitive aging: context processing, inhibition or processing speed? Neuropsychol Dev Cogn B Aging Neuropsychol Cong. 2006;13(3–4):588–610. doi:10.1080/13825580600680703
  • Braver TS, Paxton JL, Locke HS, Barch DM. Flexible neural mechanisms of cognitive control within human prefrontal cortex. Proc Natl Acad of Sci. 2009;106(18):7351–7356. doi:10.1073/pnas.080818710619380750
  • Braver TS, Barch DM, Keys BA, et al. Context processing in older adults: evidence for a theory relating cognitive control to neurobiology in healthy aging. J Exp Psychol Gen. 2001;130(4):746. doi:10.1037/0096-3445.130.4.74611757878
  • Cid-Fernández S, Lindin M, Diaz F. Effects of amnestic mild cognitive impairment on N2 and P3 Go/NoGo ERP components. J Alzheimer’s Dis. 2014;38(2):295–306. doi:10.3233/JAD-13067723963292
  • Ramos-Goicoa M, Galdo-Alvarez S, Diaz F, Zurron M. Effect of normal aging and of mild cognitive impairment on event-related potentials to a Stroop color-word task. J Alzheimer’s Dis. 2016;52(4):1487–1501. doi:10.3233/JAD-15103127079705
  • Cid-Fernández S, Lindin M, Diaz F. Neurocognitive and behavioral indexes for identifying the amnestic subtypes of mild cognitive impairment. J Alzheimer’s Dis. 2017;60(2):633–649. doi:10.3233/JAD-17036928869473
  • Cespón J, Galdo-Álvarez S, Diaz F. Electrophysiological correlates of amnestic mild cognitive impairment in a Simon task. PLoS One. 2013;8(12):e81506. doi:10.1371/journal.pone.008150624339941
  • Cespón J, Galdo-Álvarez S, Díaz F. Inhibition deficit in the spatial tendency of the response in multiple-domain amnestic mild cognitive impairment. An Event-Related Potential Study Frontiers in Aging Neuroscience. 2015;6(7):68.
  • Cid-Fernández S, Lindín M, Díaz F. Stimulus-locked lateralized readiness potential and performance: useful markers for differentiating between amnestic subtypes of mild cognitive impairment. J Prev Alzheimers Dis. 2017;Jan(4):21–28.
  • Braver TS, Satpute AB, Rush BK, Racine CA, Barch DM. Context processing and context maintenance in healthy aging and early stage dementia of the Alzheimer’s type. Psychol Aging. 2005;20(1):33. doi:10.1037/0882-7974.20.1.3315769212
  • Fogelson N, Fernandez-del-Olmo M, Santos-Garcia D. Contextual processing deficits in Parkinson’s disease: the role of the frontostriatal system. Clin Neurophysiol. 2011;122(3):539–545. doi:10.1016/j.clinph.2010.07.01720709594
  • Li L, Diaz-Brage P, Fernandez-Lago H, Fogelson N. Processing of implicit versus explicit predictive contextual information in Parkinson’s disease. Neuropsychologia. 2018;31(109):39–51. doi:10.1016/j.neuropsychologia.2017.12.006
  • Wylie SA, Ridderinkhof KR, Bashore TR, van den Wildenberg WP. The effect of Parkinson’s disease on the dynamics of on-line and proactive cognitive control during action selection. J Cong Neurosci. 2010;22(9):2058–2073. doi:10.1162/jocn.2009.21326
  • Di Caprio V, Modugno N, Mancini C, Olivola E, Mirabella G. Early‐stage Parkinson’s patients show selective impairment in reactive but not proactive inhibition. Mov Disord. 2020;35(3):409–418. doi:10.1002/mds.2792031755149
  • Braver TS, Cohen JD. Dopamine, cognitive control, and schizophrenia: the gating model. In: Progress in Brain Research. Vol. 121. Elsevier; 1999:327–349.10551035
  • Braver TS, Cohen JD. On the control of control: the role of dopamine in regulating prefrontal function and working memory. Control Cognitive Processes. 2000;1:713–737.
  • Trewartha KM, Spilka MJ, Penhune VB, Li KZ, Phillips NA. Context-updating processes facilitate response reprogramming in younger but not older adults. Psychol Aging. 2013;28(3):701. doi:10.1037/a003384324041003
  • De Sanctis P, Gomez‐Ramirez M, Sehatpour P, Wylie GR, Foxe JJ. Preserved executive function in high‐performing elderly is driven by large‐scale recruitment of prefrontal cortical mechanisms. Hum Brain Mapp. 2009;30(12):4198–4214. doi:10.1002/hbm.2083919572310
  • Shiffrin RM, Schneider W. Controlled and automatic human information processing: II. Perceptual learning, automatic attending and a general theory . Psychol Rev. 1977;84(2):127.
  • Jacoby LL, Lindsay DS, Hessels S. Item-specific control of automatic processes: stroop process dissociations. Psychon Bull Rev. 2003;10(3):638–644. doi:10.3758/BF319652614620358
  • West RL. An application of prefrontal cortex function theory to cognitive aging. Psychol Bull. 1996;120(2):272. doi:10.1037/0033-2909.120.2.2728831298
  • Head D, Buckner RL, Shimony JS, et al. Differential vulnerability of anterior white matter in nondemented aging with minimal acceleration in dementia of the Alzheimer type: evidence from diffusion tensor imaging. Cereb Cortex. 2004;14(4):410–423. doi:10.1093/cercor/bhh00315028645
  • Petersen SE, Posner MI. The attention system of the human brain: 20 years after. Annu Rev Neurosci. 2012;21(35):73–89. doi:10.1146/annurev-neuro-062111-150525
  • Stopford CL, Thompson JC, Neary D, Richardson AM, Snowden JS. Working memory, attention, and executive function in Alzheimer’s disease and frontotemporal dementia. Cortex. 2012;48(4):429–446. doi:10.1016/j.cortex.2010.12.00221237452
  • Alber J, Alladi S, Bae HJ, et al. White matter hyperintensities in vascular contributions to cognitive impairment and dementia (VCID): knowledge gaps and opportunities. Alzheimer’s Dement (NY). 2019;Jan(5):107–117. doi:10.1016/j.trci.2019.02.001
  • Löckenhoff CE. Aging and decision-making: a conceptual framework for future research-a mini-review. Gerontology. 2018;64(2):140–148. doi:10.1159/00048524729212070
  • Gutchess AH, Hebrank A, Sutton BP, et al. Contextual interference in recognition memory with age. Neuroimage. 2007;35(3):1338–1347. doi:10.1016/j.neuroimage.2007.01.04317355910
  • Bayen UJ, Phelps MP, Spaniol J. Age-related differences in the use of contextual information in recognition memory: a global matching approach. J Gerontol B Psychol Sci Soc Sci. 2000;55:131–141. doi:10.1093/geronb/55.3.P131
  • Aydelott J, Leech R, Crinion J. Normal adult aging and the contextual influences affecting speech and meaningful sound perception. Trends Amplif. 2010;14(4):218–232. doi:10.1177/108471381039375121307006