164
Views
2
CrossRef citations to date
0
Altmetric
Original Research

Serum sirtuin 1 is independently associated with intact PTH among patients with chronic kidney disease

ORCID Icon, ORCID Icon, , , , ORCID Icon & ORCID Icon show all
Pages 525-536 | Published online: 25 Mar 2021

References

  • Liu M, Li XC, Lu L, et al. Cardiovascular disease and its relationship with chronic kidney disease. Eur Rev Med Pharmacol Sci. 2014;18(19):2918–2926.25339487
  • Go AS, Chertow GM, Fan D, McCulloch CE, Hsu C. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351(13):1296–1305. doi:10.1056/NEJMoa04103115385656
  • Gao D, Zuo Z, Tian J, et al. Activation of SIRT1 attenuates klotho deficiency-induced arterial stiffness and hypertension by enhancing AMP-activated protein kinase activity. Hypertension. 2016;68(5):1191–1199. doi:10.1161/HYPERTENSIONAHA.116.0770927620389
  • Haigis MC, Guarente LP. Mammalian sirtuins–emerging roles in physiology, aging, and calorie restriction. Genes Dev. 2006;20(21):2913–2921. doi:10.1101/gad.146750617079682
  • Hasegawa K, Wakino S, Simic P, et al. Renal tubular Sirt1 attenuates diabetic albuminuria by epigenetically suppressing Claudin-1 overexpression in podocytes. Nat Med. 2013;19(11):1496–1504. doi:10.1038/nm.336324141423
  • Tagawa A, Yasuda M, Kume S, et al. Impaired podocyte autophagy exacerbates proteinuria in diabetic nephropathy. Diabetes. 2016;65(3):755–767. doi:10.2337/db15-047326384385
  • Li J, Qu X, Ricardo SD, Bertram JF, Nikolic-Paterson DJ. Resveratrol inhibits renal fibrosis in the obstructed kidney: potential role in deacetylation of Smad3. Am J Pathol. 2010;177(3):1065–1071. doi:10.2353/ajpath.2010.09092320651248
  • Hariharan N, Maejima Y, Nakae J, Paik J, Depinho RA, Sadoshima J. Deacetylation of FoxO by Sirt1 plays an essential role in mediating starvation-induced autophagy in cardiac myocytes. Circ Res. 2010;107(12):1470–1482. doi:10.1161/CIRCRESAHA.110.22737120947830
  • Zhang QJ, Wang Z, Chen HZ, et al. Endothelium-specific overexpression of class III deacetylase SIRT1 decreases atherosclerosis in apolipoprotein E-deficient mice. Cardiovasc Res. 2008;80(2):191–199. doi:10.1093/cvr/cvn22418689793
  • Mattagajasingh I, Kim CS, Naqvi A, et al. SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase. Proc Natl Acad Sci. 2007;104(37):14855 LP– 14860. doi:10.1073/pnas.070432910417785417
  • Gao P, Xu TT, Lu J, et al. Overexpression of SIRT1 in vascular smooth muscle cells attenuates angiotensin II-induced vascular remodeling and hypertension in mice. J Mol Med. 2014;92(4):347–357. doi:10.1007/s00109-013-1111-424352856
  • Doulamis IP, Tzani AI, Konstantopoulos PS, et al. A sirtuin 1/MMP2 prognostic index for myocardial infarction in patients with advanced coronary artery disease. Int J Cardiol. 2017;230:447–453. doi:10.1016/j.ijcard.2016.12.08628043667
  • Fathy SA, Ibrahim DM, Elkhayat WA, Ahmed HS. Association between serum sirt 1 and advanced glycation end products levels in type 2 diabetic nephropathy patients. Int J Biosci. 2017;10:398–404.
  • Shao Y, Ren H, Lv C, Ma X, Wu C, Wang Q. Changes of serum Mir-217 and the correlation with the severity in type 2 diabetes patients with different stages of diabetic kidney disease. Endocrine. 2017;55(1):130–138. doi:10.1007/s12020-016-1069-427522360
  • Zbroch E, Bazyluk A, Malyszko J, et al. The serum concentration of anti-aging proteins, sirtuin1 and αklotho in patients with end-stage kidney disease on maintenance hemodialysis. Clin Interv Aging. 2020;15:387–393. doi:10.2147/CIA.S23698032214805
  • Ugur S, Ulu R, Dogukan A, et al. The renoprotective effect of curcumin in cisplatin-induced nephrotoxicity. Ren Fail. 2015;37(2):332–336. doi:10.3109/0886022X.2014.986005
  • He W, Wang Y, Zhang MZ, et al. Sirt1 activation protects the mouse renal medulla from oxidative injury. J Clin Invest. 2010;120(4):1056–1068. doi:10.1172/JCI4156320335659
  • Laflamme MH, Mahjoub H, Mahmut A, et al. Parathyroid hormone is associated with the LV mass after aortic valve replacement. Heart. 2014;100(23):1859–1864. doi:10.1136/heartjnl-2014-30583725095827
  • Schiffl H, Lang SM. Hypertension secondary to PHPT: cause or coincidence? Int J Endocrinol. 2011;2011:974647. doi:10.1155/2011/97464721423544
  • Pepe J, Cipriani C, Curione M, et al. Reduction of arrhythmias in primary hyperparathyroidism, by parathyroidectomy, evaluated with 24-h ECG monitoring. Eur J Endocrinol. 2018;179(2):117–124. doi:10.1530/EJE-17-094829875287
  • Fujii H. Association between parathyroid hormone and cardiovascular disease. Ther Apher Dial. 2018;22(3):236–241. doi:10.1111/1744-9987.1267929707916
  • Hagström E, Hellman P, Larsson TE, et al. Plasma parathyroid hormone and the risk of cardiovascular mortality in the community. Circulation. 2009;119(21):2765–2771. doi:10.1161/CIRCULATIONAHA.108.80873319451355
  • Yuen NK, Ananthakrishnan S, Campbell MJ. Hyperparathyroidism of renal disease. Perm J. 2016;20(3):15–127. doi:10.7812/TPP/15-127
  • Dhayat NA, Ackermann D, Pruijm M, et al. Fibroblast growth factor 23 and markers of mineral metabolism in individuals with preserved renal function. Kidney Int. 2016;90(3):648–657. doi:10.1016/j.kint.2016.04.02427370409
  • Weaver DJ, Mitsnefes M. Cardiovascular disease in children and adolescents with chronic kidney disease. Semin Nephrol. 2018;38(6):559–569. doi:10.1016/j.semnephrol.2018.08.00230413251
  • Civilibal M, Caliskan S, Adaletli I, et al. Coronary artery calcifications in children with end-stage renal disease. Pediatr Nephrol. 2006;21(10):1426–1433. doi:10.1007/s00467-006-0159-616821026
  • Smajilovic S, Schaal-Jensen R, Jabbari R, Smajilovic U, Haunso S, Tfelt-Hansen J. Effect of intermittent versus continuous parathyroid hormone in the cardiovascular system of rats. Open Cardiovasc Med J. 2010;4(1):110–116. doi:10.2174/187419240100401011020461233
  • Nakajima K, Nohtomi K, Sato M, Takano K, Sato K. PTH(7-84) inhibits PTH(1-34)-induced 1,25-(OH)2D3 production in murine renal tubules. Biochem Biophys Res Commun. 2009;381(2):283–287. doi:10.1016/j.bbrc.2009.02.02319338780
  • Kakuta T, Ishida M, Fukagawa M. Critical governance issue of parathyroid hormone assays and its selection in the management of chronic kidney disease mineral and bone disorders. Ther Apher Dial. 2018;22(3):220–228. doi:10.1111/1744-9987.1269029781225
  • Souberbielle JC, Brazier F, Piketty ML, Cormier C, Minisola S, Cavalier E. How the reference values for serum parathyroid hormone concentration are (or should be) established? J Endocrinol Invest. 2017;40(3):241–256. doi:10.1007/s40618-016-0553-227696297
  • Shuichi J, Yoshiki N, Atsushi S, Hirotoshi M. Parathyroid hormone–related peptide as a local regulator of vascular calcification. Arterioscler Thromb Vasc Biol. 1997;17(6):1135–1142. doi:10.1161/01.ATV.17.6.11359194765
  • Shao JS, Cheng SL, Charlton-Kachigian N, Loewy AP, Towler DA. Teriparatide (human parathyroid hormone (1-34)) inhibits osteogenic vascular calcification in diabetic low density lipoprotein receptor-deficient mice. J Biol Chem. 2003;278(50):50195–50202. doi:10.1074/jbc.M30882520014504275
  • Neves KR, Graciolli FG, Reis LM, et al. Vascular calcification: contribution of parathyroid hormone in renal failure. Kidney Int. 2007;71(12):1262–1270. doi:10.1038/sj.ki.500224117410101
  • Carrillo-López N, Panizo S, Alonso-Montes C, et al. High-serum phosphate and parathyroid hormone distinctly regulate bone loss and vascular calcification in experimental chronic kidney disease. Nephrol Dial Transplant. 2018;34(6):934–941. doi:10.1093/ndt/gfy287
  • Di Iorio B, Bellasi A, Russo D. Mortality in kidney disease patients treated with phosphate binders: a randomized study. CJASN. 2012;7(3):487–493. doi:10.2215/CJN.0382041122241819
  • Kilic U, Gok O, Erenberk U, et al. A remarkable age-related increase in SIRT1 protein expression against oxidative stress in elderly: SIRT1 gene variants and longevity in human. PLoS One. 2015;10(3):e0117954–e0117954. doi:10.1371/journal.pone.011795425785999
  • Braidy N, Guillemin GJ, Mansour H, Chan-Ling T, Poljak A, Grant R. Age related changes in NAD+ metabolism oxidative stress and Sirt1 activity in wistar rats. PLoS One. 2011;6(4):e19194–e19194. doi:10.1371/journal.pone.001919421541336
  • Ramsey KM, Mills KF, Satoh A, Imai SI. Age-associated loss of Sirt1-mediated enhancement of glucose-stimulated insulin secretion in beta cell-specific Sirt1-overexpressing (BESTO) mice. Aging Cell. 2008;7(1):78–88. doi:10.1111/j.1474-9726.2007.00355.x18005249
  • Kim MY, Zhang T, Kraus WL. Poly(ADP-ribosyl)ation by PARP-1: ‘PAR-laying’ NAD+ into a nuclear signal. Genes Dev. 2005;19:(17):1951–1967. doi:10.1101/gad.133180516140981
  • Kilic U, Gok O, Elibol-Can B, Uysal O, Bacaksiz A. Efficacy of statins on sirtuin 1 and endothelial nitric oxide synthase expression: the role of sirtuin 1 gene variants in human coronary atherosclerosis. Clin Exp Pharmacol Physiol. 2015;42(4):321–330. doi:10.1111/1440-1681.1236225582759
  • Yamaç AH, Kılıç Ü. Effect of statins on sirtuin 1 and endothelial nitric oxide synthase expression in young patients with a history of premature myocardial infarction. Turk Kardiyol Dern Ars. 2018;46(3):205–215. doi:10.5543/tkda.2018.3272429664427
  • Janić M, Lunder M, Novaković S, Škerl P, Šabovič M. Expression of longevity genes induced by a low-dose fluvastatin and valsartan combination with the potential to prevent/treat aging-related disorders. Int J Mol Sci. 2019;20(8):1844. doi:10.3390/ijms20081844
  • Sun L, Yan S, Wang X, et al. Metoprolol prevents chronic obstructive sleep apnea-induced atrial fibrillation by inhibiting structural, sympathetic nervous and metabolic remodeling of the atria. Sci Rep. 2017;7(1):14941. doi:10.1038/s41598-017-14960-229097705
  • Ha YM, Park EJ, Kang YJ, Park SW, Kim HJ, Chang KC. Valsartan independent of AT1 receptor inhibits tissue factor, TLR-2 and −4 expression by regulation of Egr-1 through activation of AMPK in diabetic conditions. J Cell Mol Med. 2014;18(10):2031–2043. doi:10.1111/jcmm.1235425109475