325
Views
11
CrossRef citations to date
0
Altmetric
Review

Metabolic Syndrome in an Aging Society – Role of Oxidant-Antioxidant Imbalance and Inflammation Markers in Disentangling Atherosclerosis

ORCID Icon
Pages 1057-1070 | Published online: 09 Jun 2021

References

  • GBD 2015 Mortality and Causes of Death Collaborators. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388:1459–1544.27733281
  • Salari A, Shakiba M, Mahdavi-Roshan M, et al. The association between various indices of obesity and severity of atherosclerosis in adults in the north of Iran. Medicine. 2016;95(50):e5670. doi:10.1097/MD.000000000000567027977617
  • Ambale-Venkatesh B, Yang X, Wu CO, et al. Cardiovascular Event prediction by machine learning: the Multi-Ethnic Study of Atherosclerosis. Circ Res. 2017;121(9):1092–1101. doi:10.1161/CIRCRESAHA.117.31131228794054
  • Klisić A, Kavarić N, Bjelaković B, et al. Cardiovascular risk assessed by reynolds risk score in relation to waist circumference in apparently healthy middle-aged population in Montenegro. Acta Clin Croat. 2018;57:22–30. doi:10.20471/acc.2018.57.01.0330256008
  • Gao X, Song J, Watase H, et al.; on behalf of CARE-II Investigators. Differences in carotid plaques between symptomatic patients with and without diabetes mellitus, A CARE-II Study. Arterioscler Thromb Vasc Biol. 2019;39(6):1234–1239. doi:10.1161/ATVBAHA.118.31209231070472
  • Ouchi Y, Sasaki J, Arai H, et al. Ezetimibe Lipid-lowering trial on prevention of atherosclerotic cardiovascular disease in 75 or older (EWTOPIA 75): a randomized, controlled trial. Circulation. 2019;140(12):992–1003. doi:10.1161/CIRCULATIONAHA.118.03941531434507
  • Mortensen MB, Nordestgaard BG. Statin use in primary prevention of atherosclerotic cardiovascular disease according to 5 major guidelines for sensitivity, specificity, and number needed to treat. JAMA Cardiol. 2019;4(11):1131–1138. doi:10.1001/jamacardio.2019.366531577339
  • Lloyd-Jones DM, Braun LT, Ndumele CE, et al. Use of risk assessment tools to guide decision-making in the primary prevention of atherosclerotic cardiovascular disease: a special report from the American Heart Association and American College of Cardiology. Circulation. 2019;139(25):e1162–e1177. doi:10.1161/CIR.000000000000063830586766
  • Lee MMY, Sattar N, McMurray JJV, Packard CJ. Statins in the prevention and treatment of heart failure: a review of the evidence. Curr Atheroscler Rep. 2019;21(10):41. doi:10.1007/s11883-019-0800-z31350612
  • Liu D, Liu J, Cai Y, et al. Is the future of symptomatic intracranial atherosclerotic stenosis management promising? J Neurol Neurosurg Psychiatry. 2020;91(2):122–124. doi:10.1136/jnnp-2019-32156431919104
  • Nelson AJ, Peterson ED, Pagidipati NJ. Atherosclerotic cardiovascular disease and heart failure: determinants of risk and outcomes in patients with diabetes. Prog Cardiovasc Dis. 2019;62(4):306–314. doi:10.1016/j.pcad.2019.07.00131301314
  • Lamprea-Montealegre JA, Zelnick LR, Hall YN, et al. Prevalence of hypertension and cardiovascular risk according to blood pressure thresholds used for diagnosis. Hypertension. 2018;72(3):602–609. doi:10.1161/HYPERTENSIONAHA.118.1160930354757
  • Sundbøll J, Larsen AP, Veres K, et al. Cardiovascular event rates and trajectories of LDL-cholesterol levels and lipid-lowering therapy in patients with atherosclerotic cardiovascular disease: a population-based cohort study. Thromb Res. 2019;183:124–130. doi:10.1016/j.thromres.2019.09.03431677592
  • Cakmak HA, Aslan S, Gul M, et al. Assessment of the relationship between a narrow fragmented QRS complex and coronary slow flow. Cardiol J. 2015;22(4):428–436. doi:10.5603/CJ.a2015.000725588536
  • Förstermann U, Xia N, Li H. Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis. Circ Res. 2017;120(4):713–735. doi:10.1161/CIRCRESAHA.116.30932628209797
  • Wu MY, Li CJ, Hou MF, Chu PY. New insights into the role of inflammation in the pathogenesis of atherosclerosis. Int J Mol Sci. 2017;18(10):2034. doi:10.3390/ijms18102034
  • Wang Y, Zang QS, Liu Z, et al. Regulation of VEGF-induced endothelial cell migration by mitochondrial reactive oxygen species. Am J Physiol Cell Physiol. 2011;301(3):C695–C704. doi:10.1152/ajpcell.00322.201021653897
  • Cheng YC, Sheen JM, Hu WL, Hung YC. Polyphenols and oxidative stress in atherosclerosis-related ischemic heart disease and stroke. Oxid Med Cell Longev. 2017;2017:8526438. doi:10.1155/2017/852643829317985
  • Staerck C, Gastebois A, Vandeputte P, et al. Microbial antioxidant defense enzymes. Microb Pathog. 2017;110:56–65. doi:10.1016/j.micpath.2017.06.01528629723
  • Morgan MJ, Liu Z. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res. 2011;21(1):103–115. doi:10.1038/cr.2010.17821187859
  • Park K, Li Q, Evcimen ND, et al. Exogenous insulin infusion can decrease atherosclerosis in diabetic rodents by improving lipids, inflammation, and endothelial function. Arterioscler Thromb Vasc Biol. 2018;38(1):92–101. doi:10.1161/ATVBAHA.117.31029129162603
  • Roth S, Singh V, Tiedt S, et al. Brain-released alarmins and stress response synergize in accelerating atherosclerosis progression after stroke. Sci Transl Med. 2018;10(432):eaao1313. doi:10.1126/scitranslmed.aao131329540615
  • Brandsma E, Kloosterhuis NJ, Koster M, et al. A proinflammatory gut microbiota increases systemic inflammation and accelerates atherosclerosis. Circ Res. 2019;124(1):94–100. doi:10.1161/CIRCRESAHA.118.31323430582442
  • Heger LA, Hortmann M, Albrecht M, et al. Inflammation in acute coronary syndrome: expression of TLR2 mRNA is increased in platelets of patients with ACS. PLoS One. 2019;14(10):e0224181. doi:10.1371/journal.pone.022418131644579
  • Szpak D, Grochowalski A, Chrząszcz R, et al. Tobacco smoke exposure and endothelial dysfunction in patients with advanced coronary artery disease. Pol Arch Med Wewn. 2013;123(9):474–481. doi:10.20452/pamw.188923827987
  • Luchetti F, Crinelli R, Cesarini E, et al. Endothelial cells, endoplasmic reticulum stress and oxysterols. Redox Biol. 2017;13:581–587. doi:10.1016/j.redox.2017.07.01428783588
  • Li XK, Zhang SF, Xu W, et al. Vascular endothelial injury in severe fever with thrombocytopenia syndrome caused by the novel bunyavirus. Virology. 2018;520:11–20. doi:10.1016/j.virol.2018.05.00129754008
  • Crowther MA. Pathogenesis of atherosclerosis. ASH Educ Prog. 2005;2005:436–441.
  • Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature. 2011;473(7347):317–325. doi:10.1038/nature1014621593864
  • Roy A, Saqib U, Wary K, Baig MS. Macrophage neuronal nitric oxide synthase (NOS1) controls the inflammatory response and foam cell formation in atherosclerosis. Int Immunopharmacol. 2020;83:106382. doi:10.1016/j.intimp.2020.10638232193098
  • Chong H, Wei Z, Na M, et al. The PGC-1α/NRF1/miR-378a axis protects vascular smooth muscle cells from FFA-induced proliferation, migration and inflammation in atherosclerosis. Atherosclerosis. 2020;297:136–145. doi:10.1016/j.atherosclerosis.2020.02.00132120345
  • Kang C, Li JL. Role of PGC-1α signaling in skeletal muscle health and disease. Ann N Y Acad Sci. 2012;1271(1):110–117. doi:10.1111/j.1749-6632.2012.06738.x23050972
  • Kadlec AO, Chabowski DS, Ait-Aissa K, et al. PGC-1alpha overexpression in coronary artery disease recruits nitric oxide and hydrogen peroxide during flow mediated dilation and protects against increased intraluminal pressure. Hypertension. 2017;70:166–173. doi:10.1161/HYPERTENSIONAHA.117.0928928533333
  • Kadlec AO, Chabowski DS, Ait-Aissa K, et al. Role of PGC-1α in vascular regulation: implications for atherosclerosis. Arterioscler Thromb Vasc Biol. 2019;247:48–59.
  • Fukai T, Ushio-Fukai M. Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid Redox Signal. 2011;15(6):1583–1606. doi:10.1089/ars.2011.399921473702
  • Berg G, Barchuk M, Miksztowicz V. Behavior of metalloproteinases in adipose tissue, liver and arterial wall: an update of extracellular matrix remodeling. Cells. 2019;8(2):158. doi:10.3390/cells8020158
  • Sherling DH, Perumareddi P, Hennekens CH. Metabolic syndrome: clinical and policy implications of the new silent killer. J Cardiovasc Pharmacol Ther. 2017;22(4):365–367. doi:10.1177/107424841668618728587579
  • Alberti KG, Eckel RH, Grundy SM, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120(16):1640–1645. doi:10.1161/CIRCULATIONAHA.109.19264419805654
  • Caimi G, Lo Presti R, Montana M, et al. Lipid peroxidation, nitric oxide metabolites, and their ratio in a group of subjects with metabolic syndrome. Oxid Med Cell Longev. 2014;2014:824756. doi:10.1155/2014/82475624987495
  • Roberts CK, Sindhu KK. Oxidative stress and metabolic syndrome. Life Sci. 2009;84(21–22):705–712. doi:10.1016/j.lfs.2009.02.02619281826
  • Marseglia L, Manti S, D’Angelo S, et al. Oxidative stress in obesity: a critical component in human diseases. Int J Mol Sci. 2015;16:378–400. doi:10.3390/ijms16010378
  • Sottero B, Gargiulo S, Russo I, et al. Postprandial dysmetabolism and oxidative stress in type 2 diabetes: pathogenetic mechanisms and therapeutic strategies. Med Res Rev. 2015;35(5):968–1031. doi:10.1002/med.2134925943420
  • Dzięgielewska-Gęsiak S, Płóciniczak A, Wilemska-Kucharzewska K, et al. The relationship between plasma lipids, oxidant–antioxidant status, and glycated proteins in individuals at risk for atherosclerosis. Clin Interv Aging. 2019;14:789–796. doi:10.2147/CIA.S19601631190766
  • Khalfa A, Tiali A, Zemour L, et al. Prevalence of metabolic syndrome and its association with lifestyle and cardiovascular biomarkers among postmenopausal women in western Algeria. Int J Gynaecol Obstet. 2017;138(2):201–206. doi:10.1002/ijgo.1220628494104
  • Klisic A, Kocic G, Kavaric N, et al. Nitric oxide products are not associated with metabolic syndrome. J Med Biochem. 2019;38(3):361–367. doi:10.2478/jomb-2018-003531156347
  • Cani PD, Osto M, Geurts L, Everard A. Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity. Gut Microbes. 2012;3(4):279–288. doi:10.4161/gmic.1962522572877
  • Le Chatelier E, Nielsen T, Qin J, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500(7464):541–546. doi:10.1038/nature1250623985870
  • Halmos T, Suba I. Physiological patterns of intestinal microbiota. The role of dysbacteriosis in obesity, insulin resistance, diabetes and metabolic syndrome. Orv Hetil. 2016;157:13–22. doi:10.1556/650.2015.3029626708682
  • Lazar V, Ditu LM, Pircalabioru GG, et al. Gut microbiota, host organism, and diet trialogue in diabetes and obesity. Front Nutr. 2019;6:21–26. doi:10.3389/fnut.2019.0002130931309
  • Schunkert H, Moebus S, Hanisch J, et al. The correlation between waist circumference and ESC cardiovascular risk score: data from the German metabolic and cardiovascular risk project (GEMCAS). Clin Res Cardiol. 2008;97(11):827–835. doi:10.1007/s00392-008-0694-118648725
  • Mancia G, Bombelli M, Facchetti R, et al. Impact of different definitions of the metabolic syndrome on the prevalence of organ damage, cardiometabolic risk and cardiovascular events. J Hypertens. 2010;28(5):999–1006. doi:10.1097/HJH.0b013e328337a9e320308922
  • Adenan DM, Jaafar Z, Jayapalan JJ, Abdul Aziz A. Plasma antioxidants and oxidative stress status in obese women: correlation with cardiopulmonary response. PeerJ. 2020;8:e9230. doi:10.7717/peerj.923032477840
  • Frasca D, Blomberg BB, Paganelli R. Aging, obesity, and inflammatory age-related diseases. Front Immunol. 2017;8:1–10. doi:10.3389/fimmu.2017.0174528149297
  • Zhang T, Chen J, Tang X, Luo Q, Xu D, Yu B. Interaction between adipocytes and high-density lipoprotein: newinsights into the mechanism of obesity-induced dyslipidemia and atherosclerosis. Lipids Health Dis. 2019;18(1):223. doi:10.1186/s12944-019-1170-931842884
  • Lisko I, Tiainen K, Stenholm S, et al. Are body mass index, waist circumference and waist-to-hip ratio associated with leptin in 90-year-old people? Eur J Clin Nutr. 2013;67(4):420–422. doi:10.1038/ejcn.2013.3923443829
  • Bonneau GA, Pedrozo WR, Berg G. Adiponectin and waist circumference as predictors of insulin-resistance in women. Diabetes Metab Syndr. 2014;8(1):3–7. doi:10.1016/j.dsx.2013.10.00524661750
  • Alkaabi J, Gariballa S, Sharma C, et al. Inflammatory markers and cardiovascular risks among overweight-obese emirati women. BMC Res Notes. 2016;9(1):355. doi:10.1186/s13104-016-2160-x27440160
  • Holewijn S, den Heijer M, van Tits LJ, Swinkels DW, Stalenhoef AF, de Graaf J. Impact of waist circumference versus adiponectin level on subclinical atherosclerosis: a cross-sectional analysis in a sample from the general population. J Intern Med. 2010;267(6):588–598. doi:10.1111/j.1365-2796.2009.02192.x20210840
  • Lee-Chang C, Bodogai M, Moritoh K, et al. Accumulation of 4-1BBL+ B cells in the elderly induces the generation of granzyme-B+ CD8+ T cells with potential antitumor activity. Blood. 2014;124(9):1450–1459. doi:10.1182/blood-2014-03-56394025037628
  • Agarwal N, Chitrika A, Bhattacharjee J, Jain SK. Correlation of tumor necrosis factor-α and interleukin-6 with anthropometric indices of obesity and parameters of insulin resistance in healthy north Indian population. JIACM. 2011;12(3):196–204.
  • Nieto-Vasquez I, Vern{ndez-Veledo S, Kr{mer DK, Vila-Bedmar R, Garcia-Guerra L, Lorenzo M. Insulin resistance associated to obesity: the link TNF-alpha. Arch Physiol Biochem. 2008;114(3):183–194. doi:10.1080/1381345080218104718629684
  • Popko K, Gorska E, Stelmaszczyk-Emmel A, et al. Proinfl ammatory cytokines IL-6 and TNF-α and the development of infl ammation in obese subjects. Eur J Med Res. 2010;15:120–122. doi:10.1186/2047-783X-15-S2-12021147638
  • Efremov L, Lacruz ME, Tiller D, et al. Metabolically healthy, but obese individuals and associations with echocardiographic parameters and inflammatory biomarkers: results from the CARLA Study. Diabetes Metab Syndr Obes. 2020;13:2653–2665. doi:10.2147/DMSO.S26372732821138
  • Adachi K, Sugiyama T, Yamaguchi Y, et al. Gut microbiota disorders cause type 2 diabetes mellitus and homeostatic disturbances in gut-related metabolism in Japanese subjects. J Clin Biochem Nutr. 2019;64:231–238. doi:10.3164/jcbn.18-10131138957
  • Yadav D, Mishra M, Joseph AZ, et al. Status of antioxidant and lipid peroxidation in type 2 diabetic human subjects diagnosed with and without metabolic syndrome by using NCEP-ATPIII, IDF and WHO criteria. Obes Res Clin Pract. 2015;9(2):158–167. doi:10.1016/j.orcp.2014.03.00425890429
  • Karaouzene N, Merzouk H, Aribi M, et al. Effects of the association of aging and obesity on lipids, lipoproteins and oxidative stress biomarkers: a comparison of older with young men. Nutr Metab Cardiovasc Dis. 2011;21(10):792–799. doi:10.1016/j.numecd.2010.02.00720554180
  • Schwingshackl L, Hoffmann G. Comparison of effects of long-term low-fat vs high-fat diets on blood lipid levels in overweight or obese patients: a systematic review and meta-analysis. J Acad Nutr Diet. 2013;113(12):1640–1661. doi:10.1016/j.jand.2013.07.01024139973
  • Hurtubise J, McLellan K, Durr K, Onasanya O, Nwabuko D, Ndisang JF. The different facets of dyslipidemia and hypertension in atherosclerosis. Curr Atheroscler Rep. 2016;18(12):82. doi:10.1007/s11883-016-0632-z27822682
  • Rizzo M, Corrado E, Coppola G, Muratori I, Novo G, Novo S. Prediction of cardio- and cerebro-vascular events in patients with subclinical carotid atherosclerosis and low HDL-cholesterol. Atherosclerosis. 2008;200(2):389–395. doi:10.1016/j.atherosclerosis.2007.12.02018258237
  • El Khoudary SR, Ceponiene I, Samargandy S, et al. HDL (High-Density Lipoprotein) metrics and atherosclerotic risk in women. Arterioscler Thromb Vasc Biol. 2018;38(9):2236–2244. doi:10.1161/ATVBAHA.118.31101730026268
  • Lehto S, Ronnemaa T, Pyorala K, Laakso M. Cardiovascular risk factors clustering with endogenous hyperinsulinaemia predict death from coronary heart disease in patients with type II diabetes. Diabetologia. 2000;43:148–155. doi:10.1007/s00125005002310753035
  • Rutter MK, Meigs JB, Sullivan LM, et al. Insulin resistance, the metabolic syndrome, and incident cardiovascular events in the Framingham Offspring Study. Diabetes. 2005;54(11):3252–3257. doi:10.2337/diabetes.54.11.325216249452
  • Millan J, Pinto X, Munoz A, et al. Lipoprotein ratios: physiological significance and clinical usefulness in cardiovascular prevention. Vasc Health Risk Manag. 2009;5:757–765.19774217
  • Dobiasova M. AIP--atherogenic index of plasma as a significant predictor of cardiovascular risk: from research to practice [AIP--aterogenní index plazmy jako významný prediktor kardiovaskularního rizika: od výzkumu do praxe]. Vnitr Lek. 2006;52(1):64–71.16526201
  • Zhu XW, Deng FY, Lei SF. Meta-analysis of atherogenic index of plasma and other lipid parameters in relation to risk of type 2 diabetes mellitus. Prim Care Diabetes. 2015;9(1):60–67. doi:10.1016/j.pcd.2014.03.00724810146
  • Polonskaya YV, Shramko VS, Morozov SV, Chernyak EI, Chernyavsky AM, Ragino YI. Balance of fatty acids and their correlations with parameters of lipid metabolism and markers of inflammation in men with coronary atherosclerosis. Bull Exp Biol Med. 2017;164(1):33–35. doi:10.1007/s10517-017-3920-x29119389
  • Zheng JS, Sharp SJ, Imamura F, et al. Association between plasma phospholipid saturated fatty acids and metabolic markers of lipid, hepatic, inflammation and glycaemic pathways in eight European countries: a cross-sectional analysis in the EPIC-InterAct study. BMC Med. 2017;15(1):203. doi:10.1186/s12916-017-0968-429145892
  • Hadj Ahmed S, Kharroubi W, Kaoubaa N, et al. Correlation of trans fatty acids with the severity of coronary artery disease lesions. Lipids Health Dis. 2018;17(1):52. doi:10.1186/s12944-018-0699-329544473
  • Decharatchakul N, Settasatian C, Settasatian N, et al. Association of genetic polymorphisms in SOD2, SOD3, GPX3, and GSTT1 with hypertriglyceridemia and low HDL-C level in subjects with high risk of coronary artery disease. PeerJ. 2019;7:e7407. doi:10.7717/peerj.740731396447
  • Dzięgielewska-Gęsiak S, Bielawska L, Zowczak-Drabarczyk M, et al. The impact of high-density lipoprotein on oxidant-antioxidant balance in healthy elderly people. Pol Arch Med Wewn. 2016;126(10):731–738. doi:10.20452/pamw.355927650303
  • Singh K, Singh R, Chandra S, Tyagi S. Paraoxonase-1 is a better indicator than HDL of atherosclerosis - a pilot study in North Indian population. Diabetes Metab Syndr. 2018;12(3):275–278. doi:10.1016/j.dsx.2017.12.00629254890
  • Hao W, Friedman A. The LDL-HDL profile determines the risk of atherosclerosis: a mathematical model. PLoS One. 2014;9(3):e90497. doi:10.1371/journal.pone.009049724621857
  • Formanowicz D, Krawczyk JB, Perek B, Formanowicz P. A control-theoretic model of atherosclerosis. Int J Mol Sci. 2019;20(3):785. doi:10.3390/ijms20030785
  • Paun A, Danska JS. Modulation of type 1 and type 2 diabetes risk by the intestinal microbiome. Pediatr Diabetes. 2016;17:469–476. doi:10.1111/pedi.1242427484959
  • Ruotsalainen E, Salmenniemi U, Vauhkonen I, et al. Changes in Inflammatory cytokines are related to impaired glucose tolerance in Offspring of type 2 diabetic subjects. Diabetes Care. 2006;29(12):2714–2720. doi:10.2337/dc06-014717130210
  • Woo CY, Jang JE, Lee SE, Koh EH, Lee KU. Mitochondrial dysfunction in adipocytes as a primary cause of adipose tissue inflammation. Diabetes Metab J. 2019;43:247–256. doi:10.4093/dmj.2018.022130968618
  • Saukkonen T, Mutt SJ, Jokelainen J, et al. Adipokines and inflammatory markers in elderly subjects with high risk of type 2 diabetes and cardiovascular disease. Sci Rep. 2018;8(1):12816. doi:10.1038/s41598-018-31144-830143687
  • Rizza S, Cardellini M, Martelli E, et al. Occult impaired glucose regulation in patients with atherosclerosis is associated to the number of affected vascular districts and inflammation. Atherosclerosis. 2010;212(1):316–320. doi:10.1016/j.atherosclerosis.2010.05.01720554281
  • Wu W, Wang M, Sun Z, Wang X, Miao J, Zheng Z. The predictive value of TNF-α and IL-6 and the incidence of macrovascular complications in patients with type 2 diabetes. Acta Diabetol. 2012;49(1):3–7. doi:10.1007/s00592-010-0198-020495833
  • Kontush A, Chapman MJ. Antiatherogenic function of HDL particle subpopulations: focus on antioxidative activities. Curr Opin Lipidol. 2010;21:312–318. doi:10.1097/MOL.0b013e32833bcdc120581677
  • Dullaart RP, Annema W, Tio RA, Tietge UJ. The HDL anti-infammatory function is impaired in myocardial infarction and may predict new cardiac events independent of HDL cholesterol. Clin Chim Acta. 2014;433:34–38. doi:10.1016/j.cca.2014.02.02624613518
  • Ebtehaj S, Gruppen EG, Parvizi M, Tietge UJF, Dullaart RPF. The anti-inflammatory function of HDL is impaired in type 2 diabetes: role of hyperglycemia, paraoxonase-1 and low grade inflammation. Cardiovasc Diabetol. 2017;16(1):132. doi:10.1186/s12933-017-0613-829025405
  • Hernaez A, Soria-Florido MT, Schröder H, et al. Role of HDL function and LDL atherogenicity on cardiovascular risk: a comprehensive examination. PLoS One. 2019;14(6):e0218533. doi:10.1371/journal.pone.021853331246976
  • Dzięgielewska-Gęsiak S, Wysocka E, Michalak S, Nowakowska-Zajdel E, Kokot T, Muc-Wierzgoń M. Role of lipid peroxidation products, plasma total antioxidant status, and Cu-, Zn-superoxide dismutase activity as biomarkers of oxidative stress in elderly prediabetics. Oxid Med Cell Longev. 2014;2014:987303. doi:10.1155/2014/98730324891926
  • Kozakova M, Morizzo C, Goncalves I, Natali A, Nilsson J, Palombo C. Cardiovascular organ damage in type 2 diabetes mellitus: the role of lipids and inflammation. Cardiovasc Diabetol. 2019;18(1):61. doi:10.1186/s12933-019-0865-631077210
  • Manabe S, Okura T, Watanabe S, Higaki J. Association between carotid haemodynamics and inflammation in patients with essential hypertension. J Hum Hypertens. 2005;19(10):787–791. doi:10.1038/sj.jhh.100189815988541
  • Caimi G, Mulè G, Hopps E, Carollo C, Lo Presti R. Nitric oxide metabolites and oxidative stress in mild essential hypertension. Clin Hemorheol Microcirc. 2010;46(4):321–325. doi:10.3233/CH-2010-136021187581
  • Saraswathi R, Sankar D, Ali A, et al. A pilot assessment of oxidative stress byproducts and antioxidant activities among Indian patients with various stages of hypertension. Clin Exp Hypertens. 2011;33(7):437–443. doi:10.3109/10641963.2010.54925921627488
  • Cao J, Wang HY. Association between total antioxidant status and atherosclerosis in elderly patients with essential hypertension. Zhonghua Xin Xue Guan Bing Za Zhi. 2013;41(10):857–861.24377892
  • Kaypaklı O, Gür M, Harbalıoğlu H, Şeker T, Selek Ş. High morning blood pressure surge is associated with oxidative stress and paraoxonase 1 activity in newly diagnosed hypertensive patients. Clin Exp Hypertens. 2016;38(8):680–685. doi:10.1080/10641963.2016.120060227936340
  • Gómez-Marcos MA, Blazquez-Medela AM, Gamella-Pozuelo L, Recio-Rodriguez JI, García-Ortiz L, Martínez-Salgado C. Serum superoxide dismutase is associated with vascular structure and function in hypertensive and diabetic patients. Oxid Med Cell Longev. 2016;2016:9124676. doi:10.1155/2016/912467626635913
  • Kou H, Deng J, Gao D, et al. Relationship among adiponectin, insulin resistance and atherosclerosis in non-diabetic hypertensive patients and healthy adults. Clin Exp Hypertens. 2018;40(7):656–663. doi:10.1080/10641963.2018.142541429336612
  • David S, Kümpers P, Lukasz A, Kielstein JT, Haller H, Fliser D. Circulating angiopoietin-2 in essential hypertension: relation to atherosclerosis, vascular inflammation, and treatment with olmesartan/pravastatin. J Hypertens. 2009;27(8):1641–1647. doi:10.1097/HJH.0b013e32832be57519390459
  • Lakoski SG, Cushman M, Siscovick DS, et al. The relationship between inflammation, obesity and risk for hypertension in the Multi-Ethnic Study of Atherosclerosis (MESA). J Hum Hypertens. 2011;25(2):73–79. doi:10.1038/jhh.2010.9120944659
  • Jayedi A, Rahimi K, Bautista LE, Nazarzadeh M, Zargar MS, Shab-Bidar S. Inflammation markers and risk of developing hypertension: a meta-analysis of cohort studies. Heart. 2019;105(9):686–692. doi:10.1136/heartjnl-2018-31421630700522
  • Takagi T, Naito Y, Kashiwagi S, et al. Changes in the gut microbiota are associated with hypertension, hyperlipidemia, and type 2 diabetes mellitus in Japanese subjects. Nutrients. 2020;12(10):2996–3004. doi:10.3390/nu12102996
  • Dziechciaż M, Filip R. Biological psychological and social determinants of old age: bio-psycho-social aspects of human aging. Ann Agric Environ Med. 2014;21(4):835–838. doi:10.5604/12321966.112994325528930
  • Harman D. Free radicals in aging. Mol Cell Biochem. 1988;84(2):155–161. doi:10.1007/BF04210503068521
  • Camandola S, Mattson MP. Brain metabolism in health, aging, and neurodegeneration. EMBO J. 2017;36(11):1474–1492. doi:10.15252/embj.20169581028438892
  • Afilalo J, Alexander KP, Mack MJ, et al. Frailty assessment in the cardiovascular care of older adults. J Am Coll Cardiol. 2014;63(8):747–762. doi:10.1016/j.jacc.2013.09.07024291279
  • Malczyk E, Dzięgielewska-Gęsiak S, Fatyga E, Ziółko E, Kokot T, Muc-Wierzgoń M. Body composition in healthy older persons: role of the ratio of extracellular/total body water. J Biol Regul Homeost Agents. 2016;30(3):767–772.27655495
  • Potes Y, de Luxan-delgado B, Rodriguez-Gonzalez S, et al. Overweight in elderly people induces impaired autophagy in skeletal muscle. Free Radic Biol Med. 2017;110:31–41. doi:10.1016/j.freeradbiomed.2017.05.01828549989
  • Lee HY, Zeeshan HMA, Kim HR, et al. Nox4 regulates the eNOS uncoupling process in aging endothelial cells. Free Radic Biol Med. 2017;113:26–35. doi:10.1016/j.freeradbiomed.2017.09.01028916474
  • Gates PE, Strain WD, Shore AC. Human endothelial function and microvascular ageing. Exp Physiol. 2009;94(3):311–316. doi:10.1113/expphysiol.2008.04334919042980
  • Lassegue B, San Martin A, Griendling KK. Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system. Circ Res. 2012;110(10):1364–1390. doi:10.1161/CIRCRESAHA.111.24397222581922
  • Judkins CP, Diep H, Broughton BR, et al. Direct evidence of a role for Nox2 in superoxide production, reduced nitric oxide bioavailability, and early atherosclerotic plaque formation in ApoE−/− mice. Am J Physiol Heart Circ Physiol. 2010;298:H24–H32. doi:10.1152/ajpheart.00799.200919837950
  • Silva JF, Correa IC, Diniz TF, et al. Obesity, inflammation, and exercise training: relative contribution of iNOS and eNOS in the modulation of vascular function in the mouse aorta. Front Physiol. 2016;7(386):1–13. doi:10.3389/fphys.2016.0038626858649
  • Xiong S, Patrushev N, Forouzandeh F, et al. PGC-1α modulates telomere function and DNA damage in protecting against aging-related chronic diseases. Cell Rep. 2015;12(9):1391–1399. doi:10.1016/j.celrep.2015.07.04726299964
  • Salazar G, Cullen A, Huang J, et al. SQSTM1/p62 and PPARGC1A/PGC-1alpha at the interface of autophagy and vascular senescence. Autophagy. 2020;16(6):1092–1110. doi:10.1080/15548627.2019.165961231441382
  • Varghese JF, Patel R, Yadav UCS. Novel insights in the metabolic syndrome-induced oxidative stress and inflammation-mediated atherosclerosis. Curr Cardiol Rev. 2018;14:4–14. doi:10.2174/1573403X1366617100911225028990536
  • Dzięgielewska-Gęsiak S, Stołtny D, Brożek A, Muc-Wierzgoń M, Wysocka E. Are insulin-resistance and oxidative stress cause or consequence of aging. Exp Biol Med (Maywood). 2020;245(14):1260–1267. doi:10.1177/153537022092962132469639
  • Yadav R, Yadav RK, Khadgawat R, Pandey RM. Comparative efficacy of a 12 week yoga-based lifestyle intervention and dietary intervention on adipokines, inflammation, and oxidative stress in adults with metabolic syndrome: a randomized controlled trial. Transl Behav Med. 2019;9(4):594–604. doi:10.1093/tbm/iby06030020512
  • Beydoun MA, Fanelli-Kuczmarski MT, Beydoun HA, et al. Dairy product consumption and its association with metabolic disturbance in a prospective study of urban adults. Br J Nutr. 2018;119(6):706–719. doi:10.1017/S000711451800002829553032
  • Guasch-Ferré M, Babio N, Martínez-Gonz{lez MA, et al. Dietary fat intake and risk of cardiovascular disease and all-cause mortality in a population at high risk of cardiovascular disease. Am J Clin Nutr. 2015;102(6):1563–1573. doi:10.3945/ajcn.115.11604626561617
  • Usharani P, Merugu PL, Nutalapati C. Evaluation of the effects of a standardized aqueous extract of Phyllanthus emblica fruits on endothelial dysfunction, oxidative stress, systemic inflammation and lipid profile in subjects with metabolic syndrome: a randomised, double blind, placebo controlled clinical study. BMC Complement Altern Med. 2019;19(1):97. doi:10.1186/s12906-019-2509-531060549
  • Song J, Huang Y, Zheng W, et al. Resveratrol reduces intracellular reactive oxygen species levels by inducing autophagy through the AMPK-mTOR pathway. Front Med. 2018;12(6):697–706. doi:10.1007/s11684-018-0655-730421395
  • Bagul PK, Deepthi N, Sultana R, Banerjee SK. Resveratrol ameliorates cardiac oxidative stress in diabetes through deacetylation of NFkB-p65 and histone 3. J Nutr Biochem. 2015;26:1298–1307. doi:10.1016/j.jnutbio.2015.06.00626298192
  • Timmers S, Konings E, Bilet L, et al. Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab. 2011;14:612–622. doi:10.1016/j.cmet.2011.10.00222055504
  • Fontana L, Villareal DT, Das SK, et al. Effects of 2-year calorie restriction on circulating levels of IGF-1, IGF-binding proteins and cortisol in nonobese men and women: a randomized clinical trial. Aging Cell. 2016;15:22–27. doi:10.1111/acel.1240026443692
  • Villareal DT, Aguirre L, Gurney AB, et al. Aerobic or resistance exercise, or both, in dieting obese older adults. N Engl J Med. 2017;376(20):1943–1955. doi:10.1056/NEJMoa161633828514618
  • Illan-Gómez F, Gonzalvez-Ortega M, Orea-Soler I, et al. Obesity and inflammation: change in adiponectin, C-reactive protein, tumour necrosis factor-alpha and interleukin-6 after bariatric surgery. Obes Surg. 2012;22(6):950–955. doi:10.1007/s11695-012-0643-y22527592
  • Huang Y, Zhu X, Chen K, et al. Resveratrol prevents sarcopenic obesity by reversing mitochondrial dysfunction and oxidative stress via the PKA/LKB1/AMPK pathway. Aging. 2019;11:2217–2240. doi:10.18632/aging.10191030988232
  • Solomon TP, Sistrun SN, Krishnan RK, et al. Exercise and diet enhance fat oxidation and reduce insulin resistance in older obese adults. J Appl Physiol. 2008;104(5):1313–1319. doi:10.1152/japplphysiol.00890.200718323464
  • Rom O, Volkova N, Jeries H, Grajeda-Iglesias C, Aviram M. Exogenous (Pomegranate juice) or Endogenous (Paraoxonase1) antioxidants decrease triacylglycerol accumulation in mouse cardiovascular disease-related tissues. Lipids. 2018;53(11–12):1031–1041. doi:10.1002/lipd.1211230560569
  • Wielkoszyński T, Zalejska-Fiolka J, Strzelczyk JK, et al. Oxysterols increase inflammation, lipid marker levels and reflect accelerated endothelial dysfunction in experimental animals. Mediators Inflamm. 2018;ID 2784701. doi:10.1155/2018/2784701
  • Verhoeven V, Van der Auwera A, Van Gaal L, et al. Can red yeast rice and olive extract improve lipid profile and cardiovascular risk in metabolic syndrome?: a double blind, placebo controlled randomized trial. BMC Complement Altern Med. 2015;15:52. doi:10.1186/s12906-015-0576-925879228
  • Zhu X, Yang J, Zhu W, et al. Combination of berberine with resveratrol improves the lipid-lowering efficacy. Int J Mol Sci. 2018;19(12):3903. doi:10.3390/ijms19123903
  • Gabriel B, Ratkevicius A, Gray P, Frenneaux MP, Gray SR. High-intensity exercise attenuates postprandial lipaemia and markers of oxidative stress. Clin Sci. 2012;123(5):313–321. doi:10.1042/CS20110600
  • Sawada T, Tsubata H, Hashimoto N, et al. Effects of 6-month eicosapentaenoic acid treatment on postprandial hyperglycemia, hyperlipidemia, insulin secretion ability, and concomitant endothelial dysfunction among newly-diagnosed impaired glucose metabolism patients with coronary artery disease. An open label, single blinded, prospective randomized controlled trial. Cardiovasc Diabetol. 2016;15(1):121. doi:10.1186/s12933-016-0437-y27565734
  • Kim H, Simbo SY, Fang C, et al. Açaí (Euterpe oleracea Mart.) beverage consumption improves biomarkers for inflammation but not glucose- or lipid-metabolism in individuals with metabolic syndrome in a randomized, double-blinded, placebo-controlled clinical trial. Food Funct. 2018;9(6):3097–3103. doi:10.1039/c8fo00595h29850709
  • Farabi SS, Carley DW, Smith D, Quinn L. Impact of exercise on diurnal and nocturnal markers of glycaemic variability and oxidative stress in obese individuals with type 2 diabetes or impaired glucose tolerance. Diab Vasc Dis Res. 2015;12(5):381–385. doi:10.1177/147916411557900325994591
  • Johnson SA, Figueroa A, Navaei N, et al. Daily blueberry consumption improves blood pressure and arterial stiffness in postmenopausal women with pre- and stage 1-hypertension: a randomized, double-blind, placebo-controlled clinical trial. J Acad Nutr Diet. 2015;115(3):369–377. doi:10.1016/j.jand.2014.11.00125578927
  • Choy KW, Lau YS, Murugan D, Mustafa MR, Bader M. Chronic treatment with paeonol improves endothelial function in mice through inhibition of endoplasmic reticulum stress-mediated oxidative stress. PLoS One. 2017;12(5):e0178365. doi:10.1371/journal.pone.017836528562691
  • Barili A, Corralo VDS, Cardoso AM, et al. Acute responses of hemodynamic and oxidative stress parameters to aerobic exercise with blood flow restriction in hypertensive elderly women. Mol Biol Rep. 2018;45(5):1099–1109. doi:10.1007/s11033-018-4261-130030775
  • Dolati S, Namiranian K, Amerian R, et al. The effect of curcumin supplementation and aerobic training on anthropometric indices, serum lipid profiles, C-reactive protein and insulin resistance in overweight women: a randomized, double-blind, placebo-controlled trial. J Obes Metab Syndr. 2020;29(1):47–57. doi:10.7570/jomes1905532145720
  • Welty FK, Alfaddagh A, Elajami TK. Targeting inflammation in metabolic syndrome. Transl Res. 2016;167:257–280.26207884
  • Kelany ME, Hakami TM, Omar AH. Curcumin improves the metabolic syndrome in high-fructose-diet-fed rats: role of TNF-α, NF-κB, and oxidative stress. Can J Physiol Pharmacol. 2017;95:140–150. doi:10.1139/cjpp-2016-015227901349
  • Dogaru G, Bulboaca AE, Gheban D, et al. Effect of liposomal curcumin on acetaminophen hepatotoxicity by down-regulation of oxidative stress and matrix metalloproteinases. In Vivo. 2020;34(2):569–582. doi:10.21873/invivo.1180932111755
  • Maithilikarpagaselvi N, Sridhar MG, Swaminathan RP, Zachariah B. Curcumin prevents inflammatory response, oxidative stress and insulin resistance in high fructose fed male wistar rats: potential role of serine kinases. Chem Biol Interact. 2016;244:187–194. doi:10.1016/j.cbi.2015.12.01226713546