130
Views
5
CrossRef citations to date
0
Altmetric
Original Research

Integrating a Prevention Care Path into the Daily Life of Older Adults with Mobility Disability Risk: Introducing a Predictive Response Model to Exercise

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1617-1629 | Published online: 10 Sep 2021

References

  • MerchantRA, MorleyJE, IzquierdoM. Exercise, aging and frailty: guidelines for increasing function. J Nutr Health Aging. 2021;25(4):405–409. doi:10.1007/s12603-021-1590-x33786554
  • JanssenI. Influence of sarcopenia on the development of physical disability: the cardiovascular health study. J Am Geriatr Soc. 2006;54(1):56–62. doi:10.1111/j.1532-5415.2005.00540.x16420198
  • Cruz-JentoftAJ, BahatG, BauerJ, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16–31. doi:10.1093/ageing/afy16930312372
  • ShafieeG, KeshtkarA, SoltaniA, AhadiZ, LarijaniB, HeshmatR. Prevalence of sarcopenia in the world: a systematic review and meta- analysis of general population studies. J Diabetes Metab Disord. 2017;16(1):1–10. doi:10.1186/s40200-017-0302-x28097106
  • Leirós-RodríguezR, Romo-PérezV, García-SoidánJL, Soto-RodríguezA. Prevalence and factors associated with functional limitations during aging in a representative sample of Spanish population. Phys Occup Ther Geriatr. 2018;36(2–3):156–167. doi:10.1080/02703181.2018.1449163
  • FerrucciL, CooperR, ShardellM, SimonsickEM, SchrackJA, KuhD. Age-related change in mobility: perspectives from life course epidemiology and geroscience. J Gerontol. 2016;71(9):1184–1194. doi:10.1093/gerona/glw043
  • BufordTW, AntonSD, JudgeAR, et al. Models of accelerated sarcopenia: critical pieces for solving the puzzle of age-related muscle atrophy. Ageing Res Rev. 2010;9(4):369–383. doi:10.1016/j.arr.2010.04.004.Models20438881
  • OhB, ChoB, ChoiHC, et al. The influence of lower-extremity function in elderly individuals’ quality of life (QOL): an analysis of the correlation between SPPB and EQ-5D. Arch Gerontol Geriatr. 2014;58(2):278–282. doi:10.1016/j.archger.2013.10.00824275121
  • SobestianskyS, MichaelssonK, CederholmT. Sarcopenia prevalence and associations with mortality and hospitalisation by various sarcopenia definitions in 85–89 year old community-dwelling men: a report from the ULSAM study. BMC Geriatr. 2019;19(1):1–13. doi:10.1186/s12877-019-1338-130606112
  • HassanEB, DuqueG. Osteosarcopenia: a new geriatric syndrome. Aust Fam Physician. 2017;46(11):849–853.29101922
  • AntonSD, HidaA, MankowskiR, et al. Nutrition and exercise in sarcopenia. Curr Protein Pept Sci. 2018;19(7):649–667. doi:10.2174/138920371766616122714434928029078
  • BillotM, CalvaniR, UrtamoA, et al. Preserving mobility in older adults with physical frailty and sarcopenia: opportunities, challenges, and recommendations for physical activity interventions. Clin Interv Aging. 2020;15:1675–1690. doi:10.2147/CIA.S25353532982201
  • OpdenackerJ, BoenF, CoorevitsN, DelecluseC. Effectiveness of a lifestyle intervention and a structured exercise intervention in older adults. Prev Med. 2008;46(6):518–524. doi:10.1016/j.ypmed.2008.02.01718405960
  • ClemsonL, Fiatarone SinghMA, BundyA, et al. Integration of balance and strength training into daily life activity to reduce rate of falls in older people (the LiFE study): randomised parallel trial. BMJ. 2012;345(7870):1–15. doi:10.1136/bmj.e4547
  • Van DongenEJI, Haveman-NiesA, DoetsEL, DorhoutBG, de GrootLCPGM. Effectiveness of a diet and resistance exercise intervention on muscle health in older adults: proMuscle in practice. J Am Med Dir Assoc. 2020;21(8):1065–1072.e3. doi:10.1016/j.jamda.2019.11.02631948853
  • GroesslEJ, KaplanRM, RejeskiWJ, et al. Physical activity and performance impact long-term quality of life in older adults at risk for major mobility disability. Am J Prev Med. 2019;56(1):141–146. doi:10.1016/j.amepre.2018.09.00630573142
  • LavinKM, RobertsBM, FryCS, MoroT, RasmussenBB, BammanMM. The importance of resistance exercise training to combat neuromuscular aging. Physiology. 2019;34(2):112–122. doi:10.1152/physiol.00044.201830724133
  • ChmeloEA, CrottsCI, NewmanJC, et al. Heterogeneity of physical function responses to exercise training in older adults. J Am Geriatr Soc. 2015;63(3):1759–1765. doi:10.1111/jgs.13322.Heterogeneity
  • PahorM, GuralnikJM, AmbrosiusWT, et al. Effect of structured physical activity on prevention of major mobility disability in older adults: the LIFE Study randomized clinical trial. J Am Med Assoc. 2014;10(4):591–598. doi:10.17267/2238-2704rpf.v10i4.3052
  • MalmstromTK, MillerDK, SimonsickEM, FerrucciL, MorleyJE. SARC-F: a symptom score to predict persons with sarcopenia at risk for poor functional outcomes. J Cachexia Sarcopenia Muscle. 2016;7(1):28–36. doi:10.1002/jcsm.1204827066316
  • U.S Department of Health and Human Services. Physical Activity Guidelines for Americans; 2018.
  • TavassoliN, PiauA, BerbonC, et al. Framework Implementation of the INSPIRE ICOPE-CARE program in collaboration with the World Health Organization (WHO) in the Occitania Region. J Frailty Aging. 2020;2:1–7. doi:10.14283/jfa.2020.26
  • KamenG, KnightCA. Training-related adaptations in motor unit discharge rate in young and older adults. J Gerontol. 2004;59(12):1334–1338. doi:10.1093/gerona/59.12.1334
  • PattenC, KamenG, RowlandDM. Adaptations in maximal motor unit discharge rate to strength training in young and older adults. Muscle Nerve. 2001;24(4):542–550. doi:10.1002/mus.103811268027
  • FollandJP, WilliamsAG. The adaptations to strength training: morphological and neurological contributions to increased strength. Sport Med. 2007;37(2):145–168. doi:10.2165/00007256-200737020-00004
  • BaroniBM, RodriguesR, FrankeRA, GeremiaJM, RassierDE, VazMA. Time course of neuromuscular adaptations to knee extensor eccentric training. Int J Sports Med. 2013;34(10):904–911. doi:10.1055/s-0032-133326323526592
  • GuralnikJM, SimonsickEM, FerrucciL, et al. A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol. 1994;49(2):M85–M94. doi:10.1093/geronj/49.2.M858126356
  • RobertsHC, DenisonHJ, MartinHJ, et al. A review of the measurement of grip strength in clinical and epidemiological studies: towards a standardised approach. Age Ageing. 2011;40(4):423–429. doi:10.1093/ageing/afr05121624928
  • MentiplayBF, ClarkRA, BowerKJ, WilliamsG, PuaYH. Five times sit-to-stand following stroke: relationship with strength and balance. Gait Posture. 2020;78(January):35–39. doi:10.1016/j.gaitpost.2020.03.00532199232
  • JanssenI, HeymsfieldSB, BaumgartnerRN, RossR. Estimation of skeletal muscle mass by bioelectrical impedance analysis. J Appl Physiol. 2000;89(2):465–471. doi:10.1152/jappl.2000.89.2.46510926627
  • Cruz-JentoftAJ, BaeyensJP, BauerJM, et al. Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on sarcopenia in older people. Age Ageing. 2010;39(4):412–423. doi:10.1093/ageing/afq03420392703
  • TopolskiTD, LoGerfoJ, PatrickDL, WilliamsB, WalwickJ, PatrickMB. The Rapid Assessment of Physical Activity (RAPA) among older adults. Prev Chronic Dis. 2006;3(4):1–8.
  • TaekemaDG, GusseklooJ, MaierAB, WestendorpRGJ, De CraenAJM. Handgrip strength as a predictor of functional, psychological and social health. A prospective population-based study among the oldest old. Age Ageing. 2010;39(3):331–337. doi:10.1093/ageing/afq02220219767
  • IhakaR, GentlemanR. R: a language and environment for statistical computing. 2020.
  • LayneAS, HsuFC, BlairSN, et al. Predictors of change in physical function in older adults in response to long-term, structured physical activity: the LIFE Study. Arch Phys Med Rehabil. 2017;98(1):11–24.e3. doi:10.1016/j.apmr.2016.07.01927568165
  • BatsisJA, VillarealDT. Sarcopenic obesity in older adults: aetiology, epidemiology and treatment strategies. Nat Rev Endocrinol. 2018;14(9):513–537. doi:10.1038/s41574-018-0062-930065268
  • DuchateauJ, KlassM, BaudryS. Évolution Et Adaptations À L’Entraînement Du Système Neuromusculaire Au Cours Du Vieillissement [Development and training adaptations of the neuromuscular system during aging]. Sci Sport. 2006;21(4):199–203. France. doi:10.1016/j.scispo.2006.03.006
  • PortoJM, Midori NakaishAP, Cangussu-OliveiraLM, RenatoCFJ, SalluaBS, Daniela CristinaCDA. Relationship between grip strength and global muscle strength in community-dwelling older people. Arch Gerontol Geriatr. 2019;82:273–278. doi:10.1016/j.archger.2019.03.00530889410
  • FragalaMS, CadoreEL, DorgoS, et al. Resistance training for older adults: position statement from the national strength and conditioning association. J Strength Cond Res. 2019;33(8):2019–2052. doi:10.1519/jsc.000000000000323031343601
  • CawthonPM, TravisonTG, ManiniTM, et al. Establishing the link between lean mass and grip strength cut points with mobility disability and other health outcomes: proceedings of the sarcopenia definition and outcomes consortium conference. J Gerontol. 2020;75(7):1317–1323. doi:10.1093/gerona/glz081
  • BohannonRW. Grip strength: an indispensable biomarker for older adults. Clin Interv Aging. 2019;14:1681–1691. doi:10.2147/CIA.S19454331631989
  • ThomasE, BattagliaG, PattiA, et al. Physical activity programs for balance and fall prevention in elderly. Medicine. 2019;98(27):1–9. doi:10.1097/MD.0000000000016218
  • MacdonaldSHF, TraversJ, ShéÉN, et al. Primary care interventions to address physical frailty among community-dwelling adults aged 60 years or older: a meta-analysis. PLoS One. 2020;15:2. doi:10.1371/journal.pone.0228821
  • ZhangY, ZhangY, DuS, WangQ, XiaH, SunR. Exercise interventions for improving physical function, daily living activities and quality of life in community-dwelling frail older adults: a systematic review and meta-analysis of randomized controlled trials. Geriatr Nurs. 2020;41(3):261–273. doi:10.1016/j.gerinurse.2019.10.00631706592
  • LawTD, ClarkLA, ClarkBC. Resistance exercise to prevent and manage sarcopenia and dynapenia. Annu Rev Gerontol Geriatr. 2016;63(8):1–18. doi:10.1891/0198-8794.36.205.Resistance
  • PetersonMD, SenA, GordonPM. Influence of resistance exercise on lean body mass in aging adults: a meta-analysis. Med Sci Sport Exerc. 2011;43(2):249–258. doi:10.1249/MSS.0b013e3181eb6265.Influence
  • PapaEV, DongX, HassanM. Resistance training for activity limitations in older adults with skeletal muscle function deficits: a systematic review. Clin Interv Aging. 2017;12:955–961. doi:10.2147/CIA.S10467428670114
  • PetersonMD, RheaMR, SenA, GordonPM. Resistance exercise for muscular strength in older adults: a meta-analysis. Ageing Res Rev. 2010;9(3):226–237. doi:10.1016/j.arr.2010.03.00420385254
  • TsekouraM, BillisE, TsepisE, et al. The effects of group and home-based exercise programs in elderly with sarcopenia: a randomized controlled trial. J Clin Med. 2018;7(12):480. doi:10.3390/jcm7120480
  • LichtenbergT, Von StengelS, SieberC, KemmlerW. The favorable effects of a high-intensity resistance training on sarcopenia in older community-dwelling men with osteosarcopenia: the randomized controlled frost study. Clin Interv Aging. 2019;14:2173–2186. doi:10.2147/CIA.S22561831908428
  • CadoreEL, IzquierdoM. How to simultaneously optimize muscle strength, power, functional capacity, and cardiovascular gains in the elderly: an update. Age. 2013;35(6):2329–2344. doi:10.1007/s11357-012-9503-x23288690
  • CadoreEL, Casas-HerreroA, Zambom-FerraresiF, et al. Multicomponent exercises including muscle power training enhance muscle mass, power output, and functional outcomes in institutionalized frail nonagenarians. Age. 2014;36(2):773–785. doi:10.1007/s11357-013-9586-z24030238
  • BaoW, SunY, ZhangT, et al. Exercise programs for muscle mass, muscle strength and physical performance in older adults with sarcopenia: a systematic review and meta-analysis. Aging Dis. 2020;11(4):863–873. doi:10.14336/AD.2019.101232765951
  • BlainH, BlochF, BorelL, et al. Activité Physique et Prévention Des Chutes Chez Les Personnes Âgées. [Physical Activity and Fall Prevention in the Elderly]. Collection Expertise Collective. France: Les éditions INSERM; 2014.
  • SousaN, MendesR, SilvaA, OliveiraJ. Combined exercise is more effective than aerobic exercise in the improvement of fall risk factors: a randomized controlled trial in community-dwelling older men. Clin Rehabil. 2017;31(4):478–486. doi:10.1177/026921551665585727353246
  • AnsaiJH, AurichioTR, GonçalvesR, RebelattoJR. Effects of two physical exercise protocols on physical performance related to falls in the oldest old: a randomized controlled trial. Geriatr Gerontol Int. 2016;16(4):492–499. doi:10.1111/ggi.1249725868484
  • VillarealDT, AguirreL, GurneyB, et al. Aerobic or resistance exercise, or both, in dieting obese older adults. N Engl J Med. 2017;376(20):1943–1955. doi:10.1056/NEJMoa1616338.Aerobic28514618
  • FieldingRA, GuralnikJM, KingAC, et al. Dose of physical activity, physical functioning and disability risk in mobility-limited older adults: results from the LIFE study randomized trial. PLoS One. 2017;12(8):1–20. doi:10.1371/journal.pone.0182155
  • MillerSL, WolfeRR. The danger of weight loss in the elderly. J Nutr Health Aging. 2008;12(7):487–491. doi:10.1007/BF298271018615231
  • MessierSP, LoeserRF, MillerGD, et al. Exercise and dietary weight loss in overweight and obese older adults with knee osteoarthritis: the arthritis, diet, and activity promotion trial. Arthritis Rheum. 2004;50(5):1501–1510. doi:10.1002/art.2025615146420
  • CermakNM, ResPT, De GrootLCPGM, SarisWHM, Van LoonLJC. Protein supplementation augments the adaptive response of skeletal muscle to resistance-type exercise training: a meta-analysis. Am J Clin Nutr. 2012;96(6):1454–1464. doi:10.3945/ajcn.112.03755623134885
  • SayersSP, GuralnikJM, NewmanAB, BrachJS, FieldingRA. Concordance and discordance between two measures of lower extremity function: 400 meter self-paced walk and SPPB. Aging Clin Exp Res. 2006;18(2):100–106. doi:10.1007/BF332742416702778