307
Views
10
CrossRef citations to date
0
Altmetric
Original Research

Effect of 5 Years of Exercise Intervention at Different Intensities on Brain Structure in Older Adults from the General Population: A Generation 100 Substudy

, , , , , & show all
Pages 1485-1501 | Published online: 12 Aug 2021

References

  • YiannopoulouKG, AnastasiouAI, ZachariouV, PelidouSH. Reasons for failed trials of disease-modifying treatments for Alzheimer disease and their contribution in recent research. Biomedicines. 2019;7(4):97. doi:10.3390/biomedicines7040097
  • AltyJ, FarrowM, LawlerK. Exercise and dementia prevention. Pract Neurol. 2020;20(3):234–240. doi:10.1136/practneurol-2019-00233531964800
  • BarnesDE, YaffeK. The projected effect of risk factor reduction on Alzheimer’s disease prevalence. Lancet Neurol. 2011;10(9):819–828. doi:10.1016/S1474-4422(11)70072-221775213
  • TariAR, NaumanJ, ZiskoN, et al. Temporal changes in cardiorespiratory fitness and risk of dementia incidence and mortality: a population-based prospective cohort study. Lancet Public Health. 2019;4(11):e565–e574. doi:10.1016/S2468-2667(19)30183-531677775
  • VossMW. The chronic exercise–cognition interaction: fMRI research. In: McMorrisT, editor. Exercise-Cognition Interaction. London, UK: Elsevier Academic Press; 2016:187–209.
  • GordonBA, RykhlevskaiaEI, BrumbackCR, et al. Neuroanatomical correlates of aging, cardiopulmonary fitness level, and education. Psychophysiology. 2008;45(5):825–838.18627534
  • EricksonKI, PrakashRS, VossMW, et al. Aerobic fitness is associated with hippocampal volume in elderly humans. Hippocampus. 2009;19(10):1030–1039. doi:10.1002/hipo.2054719123237
  • VerstynenTD, LynchB, MillerDL, et al. Caudate nucleus volume mediates the link between cardiorespiratory fitness and cognitive flexibility in older adults. J Aging Res. 2012;2012:1–11. doi:10.1155/2012/939285
  • WilliamsVJ, HayesJP, FormanDE, et al. Cardiorespiratory fitness is differentially associated with cortical thickness in young and older adults. Neuroimage. 2017;146:1084–1092. doi:10.1016/j.neuroimage.2016.10.03327989841
  • ZotchevaE, PintzkaCWS, SalvesenØ, SelbaekG, HåbergAK, ErnstsenL. Associations of changes in cardiorespiratory fitness and symptoms of anxiety and depression with brain volumes: the HUNT Study. Front Behav Neurosci. 2019;13:53. doi:10.3389/fnbeh.2019.0005330971904
  • ColcombeSJ, EricksonKI, ScalfPE, et al. Aerobic exercise training increases brain volume in aging humans. J Gerontol A Biol Sci Med Sci. 2006;61(11):1166–1170. doi:10.1093/gerona/61.11.116617167157
  • EricksonKI, VossMW, PrakashRS, et al. Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci USA. 2011;108(7):3017–3022. doi:10.1073/pnas.101595010821282661
  • MaassA, DuzelS, GoerkeM, et al. Vascular hippocampal plasticity after aerobic exercise in older adults. Mol Psychiatry. 2015;20(5):585–593. doi:10.1038/mp.2014.11425311366
  • NiemannC, GoddeB, Voelcker-RehageC. Not only cardiovascular, but also coordinative exercise increases hippocampal volume in older adults. Front Aging Neurosci. 2014;6:170. doi:10.3389/fnagi.2014.0017025165446
  • TaoJ, LiuJ, LiuW, et al. Tai Chi Chuan and Baduanjin increase grey matter volume in older adults: a brain imaging study. J Alzheimers Dis. 2017;60(2):389–400. doi:10.3233/JAD-17047728869478
  • JonassonLS, NybergL, KramerAF, LundquistA, RiklundK, BoraxbekkCJ. Aerobic exercise intervention, cognitive performance, and brain structure: results from the physical influences on brain in aging (PHIBRA) Study. Front Aging Neurosci. 2017;8:336. doi:10.3389/fnagi.2016.0033628149277
  • MaturaS, FleckensteinJ, DeichmannR, et al. Effects of aerobic exercise on brain metabolism and grey matter volume in older adults: results of the randomised controlled SMART trial. Transl Psychiatry. 2017;7(7):e1172. doi:10.1038/tp.2017.13528934191
  • StephenR, LiuY, NganduT, et al. Brain volumes and cortical thickness on MRI in the Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER). Alzheimers Res Ther. 2019;11(1):53. doi:10.1186/s13195-019-0506-z31164160
  • VenkatramanVK, SandersonA, CoxKL, et al. Effect of a 24-month physical activity program on brain changes in older adults at risk of Alzheimer’s disease: the AIBL active trial. Neurobiol Aging. 2020;89:132–141. doi:10.1016/j.neurobiolaging.2019.02.03031324405
  • ScheeweTW, van HarenNE, SarkisyanG, et al. Exercise therapy, cardiorespiratory fitness and their effect on brain volumes: a randomised controlled trial in patients with schizophrenia and healthy controls. Eur Neuropsychopharmacol. 2013;23(7):675–685. doi:10.1016/j.euroneuro.2012.08.00822981376
  • WagnerG, HerbslebM, de la CruzF, et al. Hippocampal structure, metabolism, and inflammatory response after a 6-week intense aerobic exercise in healthy young adults: a controlled trial. J Cereb Blood Flow Metab. 2015;35(10):1570–1578. doi:10.1038/jcbfm.2015.12526082010
  • MilanovićZ, SporišG, WestonM. Effectiveness of high-intensity interval training (HIT) and continuous endurance training for VO 2max improvements: a systematic review and meta-analysis of controlled trials. Sports Med. 2015;45(10):1469–1481. doi:10.1007/s40279-015-0365-026243014
  • SwainDP, FranklinBA. Comparison of cardioprotective benefits of vigorous versus moderate intensity aerobic exercise. Am J Cardiol. 2006;97(1):141–147. doi:10.1016/j.amjcard.2005.07.13016377300
  • CalverleyTA, OgohS, MarleyCJ, et al. HIITing the brain with exercise: mechanisms, consequences and practical recommendations. J Physiol. 2020;598(13):2513–2530. doi:10.1113/JP27502132347544
  • LucasSJ, CotterJD, BrassardP, BaileyDM. High-intensity interval exercise and cerebrovascular health: curiosity, cause, and consequence. J Cereb Blood Flow Metab. 2015;35(6):902–911. doi:10.1038/jcbfm.2015.4925833341
  • ChenFT, HopmanRJ, HuangCJ, et al. The effect of exercise training on brain structure and function in older adults: a systematic review based on evidence from randomized control trials. J Clin Med. 2020;9(4):914. doi:10.3390/jcm9040914
  • FirthJ, StubbsB, VancampfortD, et al. Effect of aerobic exercise on hippocampal volume in humans: a systematic review and meta-analysis. Neuroimage. 2018;166:230–238. doi:10.1016/j.neuroimage.2017.11.00729113943
  • StensvoldD, VikenH, RognmoO, et al. A randomised controlled study of the long-term effects of exercise training on mortality in elderly people: study protocol for the Generation 100 study. BMJ Open. 2015;5(2):e007519. doi:10.1136/bmjopen-2014-007519
  • StensvoldD, VikenH, SteinshamnSL, et al. Effect of exercise training for five years on all cause mortality in older adults—the Generation 100 study: randomised controlled trial. BMJ. 2020;371:m3485. doi:10.1136/bmj.m348533028588
  • BorgG. Ratings of perceived exertion and heart rates during short-term cycle exercise and their use in a new cycling strength test. Int J Sports Med. 1982;3(3):153–158. doi:10.1055/s-2008-10260807129724
  • WareJE, KosinskiM, DeweyJE, GandekB. How to score and interpret single-item health status measures: a manual for users of the SF-8 health survey. 2001;15(10):5. Lincoln, RI: QualityMetric Incorporated. Available from: https://www.worldcat.org/title/how-to-score-and-interpret-single-item-health-status-measures-a-manual-for-users-of-the-of-the-sf-8-health-survey-with-a-supplement-on-the-sf-6-health-survey/oclc/47005803.
  • MykletunA, StordalE, DahlAA. Hospital Anxiety and Depression (HAD) scale: factor structure, item analyses and internal consistency in a large population. Br J Psychiat. 2001;179:540–544. doi:10.1192/bjp.179.6.540
  • ZigmondAS, SnaithRP. The hospital anxiety and depression scale. Acta Psychiatr Scand. 1983;67(6):361–370. doi:10.1111/j.1600-0447.1983.tb09716.x6880820
  • BjerkesetO, MykletunA, DahlAA, LinakerO. Mortality in relation to self-reported mixed anxiety and depression symptoms–the HUNT study. Nord J Psychiatry. 2007;61(1):6–11. doi:10.1080/0803948060112192617365783
  • HaugTT, MykletunA, DahlAA. The association between anxiety, depression, and somatic symptoms in a large population: the HUNT-II study. Psychosom Med. 2004;66(6):845–851. doi:10.1097/01.psy.0000145823.85658.0c15564348
  • NasreddineZS, PhillipsNA, BedirianV, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53(4):695–699. doi:10.1111/j.1532-5415.2005.53221.x15817019
  • BorlandE, NäggaK, NilssonPM, MinthonL, NilssonED, PalmqvistS. The Montreal Cognitive Assessment: normative data from a large Swedish population-based cohort. J Alzheimers Dis. 2017;59(3):893–901. doi:10.3233/JAD-17020328697562
  • FischlB. FreeSurfer. Neuroimage. 2012;62(2):774–781. doi:10.1016/j.neuroimage.2012.01.02122248573
  • ReuterM, SchmanskyNJ, RosasHD, FischlB. Within-subject template estimation for unbiased longitudinal image analysis. Neuroimage. 2012;61(4):1402–1418. doi:10.1016/j.neuroimage.2012.02.08422430496
  • IglesiasJE, Van LeemputK, AugustinackJ, InsaustiR, FischlB, ReuterM. Bayesian longitudinal segmentation of hippocampal substructures in brain MRI using subject-specific atlases. Neuroimage. 2016;141:542–555. doi:10.1016/j.neuroimage.2016.07.02027426838
  • DaleAM, FischlB, SerenoMI. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage. 1999;9(2):179–194. doi:10.1006/nimg.1998.03959931268
  • IglesiasJE, AugustinackJC, NguyenK, et al. A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: application to adaptive segmentation of in vivo MRI. Neuroimage. 2015;115:117–137. doi:10.1016/j.neuroimage.2015.04.04225936807
  • MuellerSG, YushkevichPA, DasS, et al. Systematic comparison of different techniques to measure hippocampal subfield volumes in ADNI2. Neuroimage Clin. 2018;17:1006–1018. doi:10.1016/j.nicl.2017.12.03629527502
  • McHugoM, TalatiP, WoodwardND, ArmstrongK, BlackfordJU, HeckersS. Regionally specific volume deficits along the hippocampal long axis in early and chronic psychosis. Neuroimage Clin. 2018;20:1106–1114. doi:10.1016/j.nicl.2018.10.02130380517
  • HansenTI, BrezovaV, EikenesL, HåbergAK, VangbergTR. How does the accuracy of intracranial volume measurements affect normalized brain volumes? Sample size estimates based on 966 subjects from the HUNT MRI Cohort. AJNR Am J Neuroradiol. 2015;36(8):1450–1456. doi:10.3174/ajnr.A429925857759
  • PintzkaCWS, HansenTI, EvensmoenHR, HåbergAK. Marked effects of intracranial volume correction methods on sex differences in neuroanatomical structures: a HUNT MRI study. Front Neurosci. 2015;9:238. doi:10.3389/fnins.2015.0023826217172
  • TwiskJ, BosmanL, HoekstraT, RijnhartJ, WeltenM, HeymansM. Different ways to estimate treatment effects in randomised controlled trials. Contemp Clin Trial Commun. 2018;10:80–85. doi:10.1016/j.conctc.2018.03.008
  • GrasbyKL, JahanshadN, PainterJN, et al. The genetic architecture of the human cerebral cortex. Science. 2020;367(6484). doi:10.1126/science.aay6690
  • R core team (2019). R: A language and environment for statistical computing [computer program]. Vienna, Austria: R Foundation for Statistical Computing; 2019. Available from: http://www.r-project.org/Ref.
  • BatesD, MächlerM, BolkerB, WalkerS. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67(1):1–48. doi:10.18637/jss.v067.i01
  • IBM Corp. Released 2017. IBM SPSS Statistics for Windows, Version 25.0. Armonk, NY: IBM Corp.
  • RosanoC, GuralnikJ, PahorM, et al. Hippocampal response to a 24-month physical activity intervention in sedentary older adults. Am J Geriatr Psychiatry. 2017;25(3):209–217. doi:10.1016/j.jagp.2016.11.00727986412
  • BartschT, WulffP. The hippocampus in aging and disease: from plasticity to vulnerability. Neuroscience. 2015;309:1–16. doi:10.1016/j.neuroscience.2015.07.08426241337
  • BecharaR, KellyA. Exercise improves object recognition memory and induces BDNF expression and cell proliferation in cognitively enriched rats. Behav Brain Res. 2013;245:96–100. doi:10.1016/j.bbr.2013.02.01823439217
  • PereiraAC, HuddlestonDE, BrickmanAM, et al. An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc Natl Acad Sci USA. 2007;104(13):5638–5643. doi:10.1073/pnas.061172110417374720
  • GreeneSJ, KillianyRJ. Hippocampal subregions are differentially affected in the progression to Alzheimer’s disease. Anat Rec. 2012;295(1):132–140. doi:10.1002/ar.21493
  • LindbergO, WalterfangM, LooiJC, et al. Hippocampal shape analysis in Alzheimer’s disease and frontotemporal lobar degeneration subtypes. J Alzheimers Dis. 2012;30(2):355–365. doi:10.3233/JAD-2012-11221022414571
  • JackCRJr, PetersenRC, XuY, et al. Rate of medial temporal lobe atrophy in typical aging and Alzheimer’s disease. Neurology. 1998;51(4):993–999. doi:10.1212/WNL.51.4.9939781519
  • ArdekaniBA, ConvitA, BachmanAH. Analysis of the MIRIAD data shows sex differences in hippocampal atrophy progression. J Alzheimers Dis. 2016;50(3):847–857. doi:10.3233/JAD-15078026836168
  • BarnesJ, OurselinS, FoxNC. Clinical application of measurement of hippocampal atrophy in degenerative dementias. Hippocampus. 2009;19(6):510–516. doi:10.1002/hipo.2061719405145
  • FjellAM, WalhovdKB, Fennema-NotestineC, et al. One-year brain atrophy evident in healthy aging. J Neurosci. 2009;29(48):15223–15231. doi:10.1523/JNEUROSCI.3252-09.200919955375
  • QuistorffB, SecherNH, Van LieshoutJJ. Lactate fuels the human brain during exercise. FASEB J. 2008;22(10):3443–3449. doi:10.1096/fj.08-10610418653766
  • QuH, HåbergAK, HaraldsethO, UnsgårdG, SonnewaldU. 13C MR spectroscopy study of lactate as substrate for rat brain. Dev Neurosci. 2000;22(5–6):429–436. doi:10.1159/00001747211111159
  • VestergaardMB, JensenML, ArngrimN, LindbergU, LarssonHB. Higher physiological vulnerability to hypoxic exposure with advancing age in the human brain. J Cereb Blood Flow Metab. 2018;40(2):341–353. doi:10.1177/0271678X1881829130540217
  • KemppainenJ, AaltoS, FujimotoT, et al. High intensity exercise decreases global brain glucose uptake in humans. J Physiol. 2005;568(1):323–332. doi:10.1113/jphysiol.2005.09135516037089
  • InoueK, OkamotoM, ShibatoJ, et al. Long-term mild, rather than intense, exercise enhances adult hippocampal neurogenesis and greatly changes the transcriptomic profile of the hippocampus. PLoS One. 2015;10(6):e0128720.26061528
  • ShihPC, YangYR, WangRY. Effects of exercise intensity on spatial memory performance and hippocampal synaptic plasticity in transient brain ischemic rats. PLoS One. 2013;8(10):e78163. doi:10.1371/journal.pone.007816324205142
  • SoyaH, MukaiA, DeocarisCC, et al. Threshold-like pattern of neuronal activation in the hypothalamus during treadmill running: establishment of a minimum running stress (MRS) rat model. Neurosci Res. 2007;58(4):341–348. doi:10.1016/j.neures.2007.04.00417524508
  • StorenO, HelgerudJ, SaeboM, et al. The effect of age on the v o2max response to high-intensity interval training. Med Sci Sports Exerc. 2017;49(1):78–85. doi:10.1249/MSS.000000000000107027501361
  • FüzékiE, BanzerW. Physical activity recommendations for health and beyond in currently inactive populations. Int J Environ Res Public Health. 2018;15(5):1042. doi:10.3390/ijerph15051042
  • KodamaS, SaitoK, TanakaS, et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. JAMA. 2009;301(19):2024–2035. doi:10.1001/jama.2009.68119454641
  • NiemannC, GoddeB, StaudingerUM, Voelcker-RehageC. Exercise-induced changes in basal ganglia volume and cognition in older adults. Neuroscience. 2014;281:147–163. doi:10.1016/j.neuroscience.2014.09.03325255932
  • HansenBH, AnderssenSA, Steene-JohannessenJ, et al. Fysisk Aktivitet Og Sedat Tid Blant Voksne Og Eldre I Norge - Nasjonal Kartlegging 20142015 [Physical activity and sedentary time among adults and older adults in Norway  - A national survey 2014-2015]; 2015:IS–2367.
  • EricksonKI, RajiCA, LopezOL, et al. Physical activity predicts gray matter volume in late adulthood: the Cardiovascular Health Study. Neurology. 2010;75(16):1415–1422. doi:10.1212/WNL.0b013e3181f8835920944075
  • WoodKN, NikolovR, ShoemakerJK. Impact of long-term endurance training vs. guideline-based physical activity on brain structure in healthy aging. Front Aging Neurosci. 2016;8:155. doi:10.3389/fnagi.2016.0015527445798
  • HvidLG, HarwoodDL, EskildsenSF, DalgasU. A critical systematic review of current evidence on the effects of physical exercise on whole/regional grey matter brain volume in populations at risk of neurodegeneration. Sports Med. 2021:1–21. doi:10.1007/s40279-021-01453-633108651
  • RothmanKJ. Six persistent research misconceptions. J Gen Intern Med. 2014;29(7):1060–1064. doi:10.1007/s11606-013-2755-z24452418
  • RothmanKJ. No adjustments are needed for multiple comparisons. Epidemiology. 1990;1(1):43–46. doi:10.1097/00001648-199001000-000102081237
  • DavatzikosC. Why voxel-based morphometric analysis should be used with great caution when characterizing group differences. Neuroimage. 2004;23(1):17–20. doi:10.1016/j.neuroimage.2004.05.01015325347
  • LoeH, RognmoØ, SaltinB, WisløffU. Aerobic capacity reference data in 3816 healthy men and women 20–90 years. PLoS One. 2013;8(5):e64319. doi:10.1371/journal.pone.006431923691196
  • FlegJL, MorrellCH, BosAG, et al. Accelerated longitudinal decline of aerobic capacity in healthy older adults. Circulation. 2005;112(5):674–682. doi:10.1161/CIRCULATIONAHA.105.54545916043637