243
Views
2
CrossRef citations to date
0
Altmetric
Original Research

Bone-Mounted Robotic System in Minimally Invasive Spinal Surgery for Osteoporosis Patients: Clinical and Radiological Outcomes

, , , , , & ORCID Icon show all
Pages 589-599 | Published online: 22 Apr 2022

References

  • Galbusera F, Volkheimer D, Reitmaier S, et al. Pedicle screw loosening: a clinically relevant complication? Eur Spine J. 2015;24:1005–1016. doi:10.1007/s00586-015-3768-6
  • Rometsch E, Spruit M, Zigler JE, et al. Screw-related complications after instrumentation of the osteoporotic spine: a systematic literature review with meta-analysis. Glob Spine J. 2020;10:69–88. doi:10.1177/2192568218818164
  • Bredow J, Boese CK, Werner CML, et al. Predictive validity of preoperative CT scans and the risk of pedicle screw loosening in spinal surgery. Arch Orth Trauma Surg. 2016;136:1063–1067. doi:10.1007/s00402-016-2487-8
  • Goldstein CL, Brodke DS, Choma TJ. Surgical management of spinal conditions in the elderly osteoporotic spine. Neurosurg. 2015;77(Suppl 4):S98–S107. doi:10.1227/neu.0000000000000948
  • Röllinghoff M, Schlüter-Brust K, Groos D, et al. Mid-range outcomes in 64 consecutive cases of multilevel fusion for degenerative diseases of the lumbar spine. Orth Rev. 2010;2:e3. doi:10.4081/or.2010.e3
  • Stauff MP, Freedman BA, Kim JH, et al. The effect of pedicle screw redirection after lateral wall breach–a biomechanical study using human lumbar vertebrae. Spine J. 2014;14(1):98–103. doi:10.1016/j.spinee.2013.03.028
  • Vadalà G, De Salvatore S, Ambrosio L, et al. Robotic spine surgery and augmented reality systems: a state of the art. Neurospine. 2020;17:88–100. doi:10.14245/ns.2040060.030
  • Le X, Tian W, Shi Z, et al. Robot-assisted versus fluoroscopy-assisted cortical bone trajectory screw instrumentation in lumbar spinal surgery: a matched-cohort comparison. World Neurosurg. 2018;120:e745–e751. doi:10.1016/j.wneu.2018.08.157
  • Lonjon N, Chan-Seng E, Costalat V, Bonnafoux B, Vassal M, Boetto J. Robot-assisted spine surgery: feasibility study through a prospective case-matched analysis. Eur Spine J. 2016;25:947–955. doi:10.1007/s00586-015-3758-8
  • Keric N, Doenitz C, Haj A, et al. Evaluation of robot-guided minimally invasive implantation of 2067 pedicle screws. Neurosurg Focus. 2017;42:E11. doi:10.3171/2017.2.focus16552
  • Schatlo B, Molliqaj G, Cuvinciuc V, Kotowski M, Schaller K, Tessitore E. Safety and accuracy of robot-assisted versus fluoroscopy-guided pedicle screw insertion for degenerative diseases of the lumbar spine: a matched cohort comparison. J Neurosurg Spine. 2014;20:636–643. doi:10.3171/2014.3.spine13714
  • Molliqaj G, Schatlo B, Alaid A, et al. Accuracy of robot-guided versus freehand fluoroscopy-assisted pedicle screw insertion in thoracolumbar spinal surgery. Neurosurg Focus. 2017;4:E14. doi:10.3171/2017.3.focus179
  • Joseph JR, Smith BW, Liu X, Park P. Current applications of robotics in spine surgery: a systematic review of the literature. Neurosurg Focus. 2017;42:E2. doi:10.3171/2017.2.focus16544
  • Hu X, Ohnmeiss DD, Lieberman IH. Robotic-assisted pedicle screw placement: lessons learned from the first 102 patients. Eur Spine J. 2013;22:661–666. doi:10.1007/s00586-012-2499-1
  • Schatlo B, Martinez R, Alaid A, et al. Unskilled unawareness and the learning curve in robotic spine surgery. Acta Neurochirurgica. 2015;157:1819–1823; discussion 1823. doi:10.1007/s00701-015-2535-0
  • Fiani B, Quadri SA, Ramakrishnan V, Berman B, Khan Y, Siddiqi J. Retrospective review on accuracy: a pilot study of robotically guided thoracolumbar/sacral pedicle screws versus fluoroscopy-guided and computerized tomography stealth-guided screws. Cureus. 2017;9(7):e1437. doi:10.7759/cureus.1437
  • Fiani B, Quadri SA, Farooqui M, et al. Impact of robot-assisted spine surgery on health care quality and neurosurgical economics: a systemic review. Neurosurg Rev. 2020;43(1):17–25. doi:10.1007/s10143-018-0971-z
  • D’Souza M, Gendreau J, Feng A, Kim LH, Ho AL, Veeravagu A. Robotic-assisted spine surgery: history, efficacy, cost, and future trends. Rob Surg. 2019;6:9–23. doi:10.2147/rsrr.s190720
  • Agha RA, Sohrabi C, Mathew G, et al. The PROCESS 2020 guideline: updating consensus Preferred Reporting Of CasESeries in Surgery (PROCESS) guidelines. Int J Surg. 2020;84:231–235. doi:10.1016/j.ijsu.2020.11.005
  • Kanis JA, Melton LJ 3rd, Christiansen C, Johnston CC, Khaltaev N. The diagnosis of osteoporosis. J Bone Miner Res. 1994;9:1137–1141. doi:10.1002/jbmr.5650090802
  • Kuo KL, Su YF, Wu CH, et al. Assessing the intraoperative accuracy of pedicle screw placement by using a bone-mounted miniature robot system through secondary registration. PLoS One. 2016;11:e0153235. doi:10.1371/journal.pone.0153235
  • Tsai TH, Tzou RD, Su YF, Wu CH, Tsai CY, Lin CL. Pedicle screw placement accuracy of bone-mounted miniature robot system. Medicine. 2017;96:e5835. doi:10.1097/md.0000000000005835
  • Tsai TH, Wu DS, Su YF, Wu CH, Lin CL. A retrospective study to validate an intraoperative robotic classification system for assessing the accuracy of Kirschner wire (K-wire) placements with postoperative computed tomography classification system for assessing the accuracy of pedicle screw placements. Medicine. 2016;95:e4834. doi:10.1097/md.0000000000004834
  • Lonstein JE, Denis F, Perra JH, Pinto MR, Smith MD, Winter RB. Complications associated with pedicle screws. J Bone Joint Surg. 1999;81:1519–1528. doi:10.2106/00004623-199911000-00003
  • Burkus JK, Foley K, Haid RW, LeHuec JC. Surgical Interbody Research Group–radiographic assessment of interbody fusion devices: fusion criteria for anterior lumbar interbody surgery. Neurosurg Focus. 2001;10:E11. doi:10.3171/foc.2001.10.4.12
  • Lee CS, Kang KC, Chung SS, Park WH, Shin WJ, Seo YG. How does back muscle strength change after posterior lumbar interbody fusion? J Neurosurg Spine. 2017;26:163–170. doi:10.3171/2016.7.spine151132
  • Wu ZX, Gong FT, Liu L, et al. A comparative study on screw loosening in osteoporotic lumbar spine fusion between expandable and conventional pedicle screws. Arch Orth Trauma Surg. 2012;132:471–476. doi:10.1007/s00402-011-1439-6
  • Kuhns CA, Reiter M, Pfeiffer F, Choma TJ. Surgical strategies to improve fixation in the osteoporotic spine: the effects of tapping, cement augmentation, and screw trajectory. Global Spine J. 2014;4:47–54. doi:10.1055/s-0033-1361588
  • Carlson GD, Abitbol JJ, Anderson DR, et al. Screw fixation in the human sacrum. An in vitro study of the biomechanics of fixation. Spine. 1992;17:S196–S203. doi:10.1097/00007632-199206001-00023
  • Coe JD, Warden KE, Herzig MA, McAfee PC. Influence of bone mineral density on the fixation of thoracolumbar implants. A comparative study of transpedicular screws, laminar hooks, and spinous process wires. Spine. 1990;15:902–907. doi:10.1097/00007632-199009000-00012
  • Soshi S, Shiba R, Kondo H, Murota K. An experimental study on transpedicular screw fixation in relation to osteoporosis of the lumbar spine. Spine. 1991;16:1335–1341. doi:10.1097/00007632-199111000-00015
  • Wittenberg RH, Shea M, Swartz DE, Lee KS, White AA, Hayes WC. Importance of bone mineral density in instrumented spine fusions. Spine. 1991;16:647–652. doi:10.1097/00007632-199106000-00009
  • Ozawa T, Takahashi K, Yamagata M, et al. Insertional torque of the lumbar pedicle screw during surgery. J Orth Sci. 2005;10:133–136. doi:10.1007/s00776-004-0883-3
  • Glaser J, Stanley M, Sayre H, Woody J, Found E, Spratt K. A 10-year follow-up evaluation of lumbar spine fusion with pedicle screw fixation. Spine. 2003;28:1390–1395. doi:10.1097/01.brs.0000067112.15753.ad
  • Pihlajämaki H, Myllynen P, Böstman O. Complications of transpedicular lumbosacral fixation for non-traumatic disorders. J Bone Joint Surg. 1997;79:183–189. doi:10.1302/0301-620x.79b2.7224
  • Ohlin A, Karlsson M, Düppe H, Hasserius R, Redlund-Johnell I. Complications after transpedicular stabilization of the spine. A survivorship analysis of 163 cases. Spine. 1994;19:2774–2779. doi:10.1097/00007632-199412150-00007
  • Soini J, Laine T, Pohjolainen T, Hurri H, Alaranta H. Spondylodesis augmented by transpedicular fixation in the treatment of olisthetic and degenerative conditions of the lumbar spine. Clin Orth Relat Res. 1993;1993:111–116.
  • Kim DH, Hwang RW, Lee GH, et al. Comparing rates of early pedicle screw loosening in posterolateral lumbar fusion with and without transforaminal lumbar interbody fusion. Spine J. 2020;20:1438–1445. doi:10.1016/j.spinee.2020.04.021
  • Cho JH, Hwang CJ, Kim H, Joo YS, Lee DH, Lee CS. Effect of osteoporosis on the clinical and radiological outcomes following one-level posterior lumbar interbody fusion. J Orth Sci. 2018;23:870–877. doi:10.1016/j.jos.2018.06.009
  • Okuyama K, Abe E, Suzuki T, Tamura Y, Chiba M, Sato K. Influence of bone mineral density on pedicle screw fixation: a study of pedicle screw fixation augmenting posterior lumbar interbody fusion in elderly patients. Spine J. 2001;1:402–407. doi:10.1016/s1529-9430(01)00078-x
  • Langdahl B, Ferrari S, Dempster DW. Bone modeling and remodeling: potential as therapeutic targets for the treatment of osteoporosis. Ther Adv Musculoskeletal Dis. 2016;8:225–235. doi:10.1177/1759720x16670154
  • Defino HL, Vendrame JR. Role of cortical and cancellous bone of the vertebral pedicle in implant fixation. Eur Spine J. 2001;10:325–333. doi:10.1007/s005860000232
  • Devito DP, Kaplan L, Dietl R, et al. Clinical acceptance and accuracy assessment of spinal implants guided with SpineAssist surgical robot: retrospective study. Spine. 2010;35:2109–2115. doi:10.1097/BRS.0b013e3181d323ab
  • Kantelhardt SR, Martinez R, Baerwinkel S, Burger R, Giese A, Rohde V. Perioperative course and accuracy of screw positioning in conventional, open robotic-guided and percutaneous robotic-guided, pedicle screw placement. Eur Spine J. 2011;20:860–868. doi:10.1007/s00586-011-1729-2
  • Wang HW, Hu YC, Wu ZY, et al. Minimally invasive transforaminal lumbar interbody fusion and unilateral fixation for degenerative lumbar disease. Orth Surg. 2017;9:277–283. doi:10.1111/os.12345
  • Elmekaty M, Kotani Y, Mehy EE, et al. Clinical and radiological comparison between three different minimally invasive surgical fusion techniques for single-level lumbar isthmic and degenerative spondylolisthesis: minimally invasive surgical posterolateral fusion versus minimally invasive surgical transforaminal lumbar interbody fusion versus midline lumbar fusion. Asian Spine J. 2018;12:870–879. doi:10.31616/asj.2018.12.5.870
  • Bin Abd Razak HR, Dhoke P, Tay KS, Yeo W, Yue WM. Single-level minimally invasive transforaminal lumbar interbody fusion provides sustained improvements in clinical and radiological outcomes up to 5 years postoperatively in patients with neurogenic symptoms secondary to spondylolisthesis. Asian Spine J. 2017;11:204–212. doi:10.4184/asj.2017.11.2.204
  • Lin GX, Sharma S, Rui G, Song MS, Kim JS. Minimally invasive transforaminal lumbar interbody fusion with intraoperative fluoroscopy for disc space preparation: analysis of fusion rate and clinical results. Op Neurosurg. 2020;19:557–566. doi:10.1093/ons/opaa178
  • Fu CJ, Chen WC, Lu ML, Cheng CH, Niu CC. Comparison of paraspinal muscle degeneration and decompression effect between conventional open and minimal invasive approaches for posterior lumbar spine surgery. Sci Rep. 2020;10:14635. doi:10.1038/s41598-020-71515-8
  • Kim S, Kim H, Chung J. Effects of spinal stabilization exercise on the cross-sectional areas of the lumbar multifidus and psoas major muscles, pain intensity, and lumbar muscle strength of patients with degenerative disc disease. J Phys Ther Sci. 2014;26:579–582. doi:10.1589/jpts.26.579
  • Gazzeri R, Panagiotopoulos K, Princiotto S, Agrillo U. Spontaneous spinal arthrodesis in stand-alone percutaneous pedicle screw fixation without in situ fusion in patients with lumbar segmental instability: long-term clinical, radiologic, and functional outcomes. World Neurosurg. 2018;110:e1040–e1048. doi:10.1016/j.wneu.2017.11.159