352
Views
7
CrossRef citations to date
0
Altmetric
Original Research

A Comparison of Cerebrospinal Fluid Beta-Amyloid and Tau in Idiopathic Normal Pressure Hydrocephalus and Neurodegenerative Dementias

, ORCID Icon, , ORCID Icon, & ORCID Icon
Pages 467-477 | Published online: 11 Apr 2022

References

  • Hakim S, Venegas JG, Burton JD. The physics of the cranial cavity, hydrocephalus, and normal pressure hydrocephalus: mechanical interpretation and mathematical model. Surg Neurol. 1976;5:187–210.
  • Jaraj D, Rabiei K, Marlow T, Jensen C, Skoog I, Wikkelsø C. Prevalence of idiopathic normal-pressure hydrocephalus. Neurology. 2014;82(16):1449–1454. doi:10.1212/WNL.0000000000000342
  • Andersson J, Rosell M, Kockum K, Lilja-Lund O, Söderström L, Laurell K. Prevalence of idiopathic normal pressure hydrocephalus: a prospective, population-based study. PLoS One. 2019;14(5):e0217705. doi:10.1371/journal.pone.0217705
  • Nakajima M, Yamada S, Miyajima M, et al. Guidelines for Management of Idiopathic Normal Pressure Hydrocephalus (Third Edition): endorsed by the Japanese Society of Normal Pressure Hydrocephalus. Neurol Med Chir (Tokyo). 2021;61(2):63–97. doi:10.2176/nmc.st.2020-0292
  • Toma AK, Papadopoulos MC, Stapleton S, Kitchen ND, Watkins LD. Systematic review of the outcome of shunt surgery in idiopathic normal-pressure hydrocephalus. Acta Neurochir. 2013;155(10):1977–1980. doi:10.1007/s00701-013-1835-5
  • Relkin N, Marmarou A, Klinge P, Bergsneider M, Black PM. Diagnosing idiopathic normal-pressure hydrocephalus. Neurosurgery. 2005;57(3 Suppl):S4–v. doi:10.1227/01.neu.0000168185.29659.c5
  • Williams MA, Malm J. Diagnosis and treatment of idiopathic normal pressure hydrocephalus. Continuum. 2016;22(2Dementia):579–599. doi:10.1212/CON.0000000000000305
  • Halperin JJ, Kurlan R, Schwalb JM, Cusimano MD, Gronseth G, Gloss D. Practice guideline: idiopathic normal pressure hydrocephalus: response to shunting and predictors of response: report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology. 2015;85(23):2063–2071. Erratum in: Neurology. 2016;86(8):793. doi:10.1212/WNL.0000000000002193
  • Isik AT, Kaya D, Ates Bulut E, Dokuzlar O, Soysal P. The outcomes of serial cerebrospinal fluid removal in elderly patients with idiopathic normal pressure hydrocephalus. Clin Interv Aging. 2019;14:2063–2069. doi:10.2147/CIA.S228257
  • Manniche C, Hejl AM, Hasselbalch SG, Simonsen AH. Cerebrospinal fluid biomarkers in idiopathic normal pressure hydrocephalus versus Alzheimer’s disease and subcortical ischemic vascular disease: a systematic review. J Alzheimers Dis. 2019;68(1):267–279. doi:10.3233/JAD-180816
  • Schirinzi T, Sancesario GM, Di Lazzaro G, et al. Cerebrospinal fluid biomarkers profile of idiopathic normal pressure hydrocephalus. J Neural Transm. 2018;125(4):673–679. doi:10.1007/s00702-018-1842-z
  • Griffa A, Bommarito G, Assal F, Herrmann FR, Van De Ville D, Allali G. Dynamic functional networks in idiopathic normal pressure hydrocephalus: alterations and reversibility by CSF tap test. Hum Brain Mapp. 2021;42(5):1485–1502. doi:10.1002/hbm.25308
  • Kaya D, Erken N, Ontan MS, Altun ZS, Isik AT. The applause sign in elderly patients with idiopathic normal pressure hydrocephalus [published online ahead of print, 2020 Sep 10]. Appl Neuropsychol Adult. 2020;1–6. doi:10.1080/23279095.2020.1818563
  • Sasaki H, Ishii K, Kono AK, et al. Cerebral perfusion pattern of idiopathic normal pressure hydrocephalus studied by SPECT and statistical brain mapping. Ann Nucl Med. 2007;21:39. doi:10.1007/BF03033998
  • Bugalho P, Alves L, Miguel R, Ribeiro O. Profile of cognitive dysfunction and relation with gait disturbance in normal pressure hydrocephalus. Clin Neurol Neurosurg. 2014;118:83–88. doi:10.1016/j.clineuro.2014.01.006
  • Saito M, Nishio Y, Kanno S, et al. Cognitive profile of idiopathic normal pressure hydrocephalus. Dement Geriatr Cogn Dis Extra. 2011;1(1):202–211. doi:10.1159/000328924
  • Kaya D, Isik AT. The significance of cerebral comorbidities in idiopathic normal pressure hydrocephalus. Biomed J Sci Tech Res. 2018;6(3):5207–5209. doi:10.26717/BJSTR.2018.06.001340
  • Kanemoto H, Mori E, Tanaka T, et al. Cerebrospinal fluid amyloid beta and response of cognition to a tap test in idiopathic normal pressure hydrocephalus: a case-control study [published online ahead of print, 2021 Aug 17]. Int Psychogeriatr. 2021:1–9. doi:10.1017/S1041610221000661
  • Jeppsson A, Wikkelsö C, Blennow K, et al. CSF biomarkers distinguish idiopathic normal pressure hydrocephalus from its mimics. J Neurol Neurosurg Psychiatry. 2019;90(10):1117–1123. doi:10.1136/jnnp-2019-320826
  • Tan C, Wang X, Wang Y, et al. The pathogenesis based on the glymphatic system, diagnosis, and treatment of idiopathic normal pressure hydrocephalus. Clin Interv Aging. 2021;16:139–153. doi:10.2147/CIA.S290709
  • Chen Z, Liu C, Zhang J, Relkin N, Xing Y, Li Y. Cerebrospinal fluid Aβ42, t-tau, and p-tau levels in the differential diagnosis of idiopathic normal-pressure hydrocephalus: a systematic review and meta-analysis. Fluids Barriers CNS. 2017;14(1):13. doi:10.1186/s12987-017-0062-5
  • Oliveira LM, Nitrini R, Román GC. Normal-pressure hydrocephalus: a critical review [published correction appears in Dement Neuropsychol. 2019 Jul Sep;13(3):361]. Dement Neuropsychol. 2019;13(2):133–143. doi:10.1590/1980
  • McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):263–269. doi:10.1016/j.jalz.2011.03.005
  • Rascovsky K, Hodges JR, Knopman D, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain. 2011;134(Pt 9):2456–2477. doi:10.1093/brain/awr179
  • Litvan I, Bhatia KP, Burn DJ, et al. Movement Disorders Society Scientific Issues Committee report: SIC task force appraisal of clinical diagnostic criteria for Parkinsonian disorders. Mov Disord. 2003;18(5):467–486. doi:10.1002/mds.10459
  • Armstrong MJ, Litvan I, Lang AE, et al. Criteria for the diagnosis of corticobasal degeneration. Neurology. 2013;80(5):496–503. doi:10.1212/WNL.0b013e31827f0fd1
  • Emre M, Aarsland D, Brown R, et al. Clinical diagnostic criteria for dementia associated with Parkinson’s disease. Mov Disord. 2007;22(12):1689–1837. doi:10.1002/mds.21507
  • Dubois B, Burn D, Goetz C, et al. Diagnostic procedures for Parkinson’s disease dementia: recommendations from the movement disorder society task force. Mov Disord. 2007;22(16):2314–2324. doi:10.1002/mds.21844
  • McKeith IG, Boeve BF, Dickson DW, et al. Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB Consortium. Neurology. 2017;89(1):88–100.19. doi:10.1212/WNL.0000000000004058
  • Consensus report of the Working Group on: Biological Markers of Alzheimer’s Disease. The Ronald and Nancy Reagan research institute of the Alzheimer’s association and the national institute on aging working group. Neurobiol Aging. 1998;19:109–116.
  • Frank RA, Galasko D, Hampel H, et al. Biological markers for therapeutic trials in Alzheimer’s disease—proceedings of the Biological Measures Working Group: NIA initiative on neuroimaging in Alzheimer’s Disease. Neurobiol Aging. 2003;24:521–536. doi:10.1016/S0197-4580(03)00002-2
  • Falgàs N, Tort-Merino A, Balasa M, et al. Clinical applicability of diagnostic biomarkers in early-onset cognitive impairment. Eur J Neurol. 2019;26(8):1098–1104. doi:10.1111/ene.13945
  • Jack CR Jr, Bennett DA, Blennow K, et al. A/T/N: an unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology. 2016;87(5):539–547. doi:10.1212/WNL.0000000000002923
  • Graff-Radford NR. Alzheimer CSF biomarkers may be misleading in normal-pressure hydrocephalus. Neurology. 2014;83(17):1573–1575. doi:10.1212/WNL.0000000000000916
  • Jeppsson A, Zetterberg H, Blennow K, Wikkelsø C. Idiopathic normal-pressure hydrocephalus: pathophysiology and diagnosis by CSF biomarkers. Neurology. 2013;80(15):1385–1392. doi:10.1212/WNL.0b013e31828c2fda
  • Leinonen V, Koivisto AM, Savolainen S, et al. Post-mortem findings in 10 patients with presumed normal-pressure hydrocephalus and review of the literature. Neuropathol Appl Neurobiol. 2012;38(1):72–86. doi:10.1111/j.1365-2990.2011.01195.x
  • Elobeid A, Laurell K, Cesarini KG, Alafuzoff I. Correlations between mini-mental state examination score, cerebrospinal fluid biomarkers, and pathology observed in brain biopsies of patients with normal-pressure hydrocephalus. J Neuropathol Exp Neurol. 2015;74(5):470–479. doi:10.1097/NEN.0000000000000191
  • Seppälä TT, Nerg O, Koivisto AM, et al. CSF biomarkers for Alzheimer disease correlate with cortical brain biopsy findings. Neurology. 2012;78(20):1568–1575. doi:10.1212/WNL.0b013e3182563bd0
  • Müller-Schmitz K, Krasavina-Loka N, Yardimci T, et al. Normal pressure hydrocephalus associated with Alzheimer’s disease. Ann Neurol. 2020;88(4):703–711. doi:10.1002/ana.25847
  • Zetterberg H. Review: tau in biofluids - relation to pathology, imaging and clinical features. Neuropathol Appl Neurobiol. 2017;43(3):194–199. doi:10.1111/nan.12378
  • Zetterberg H, Blennow K. Moving fluid biomarkers for Alzheimer’s disease from research tools to routine clinical diagnostics. Mol Neurodegener. 2021;16(1):10. doi:10.1186/s13024-021-00430-x
  • Gomes LA, Hipp SA, Rijal Upadhaya A, et al. Aβ-induced acceleration of Alzheimer-related τ-pathology spreading and its association with prion protein. Acta Neuropathol. 2019;138(6):913–941. doi:10.1007/s00401-019-02053-5
  • Nakajima M, Rauramaa T, Mäkinen PM, et al. Protein tyrosine phosphatase receptor type Q in cerebrospinal fluid reflects ependymal cell dysfunction and is a potential biomarker for adult chronic hydrocephalus. Eur J Neurol. 2021;28(2):389–400. doi:10.1111/ene.14575
  • Wang C, Wang X, Tan C, et al. Novel therapeutics for hydrocephalus: insights from animal models. CNS Neurosci Ther. 2021;27(9):1012–1022. doi:10.1111/cns.13695
  • Zhan C, Xiao G, Zhang X, Chen X, Zhang Z, Liu J. Decreased MiR-30a promotes TGF-β1-mediated arachnoid fibrosis in posthemorrhagic hydrocephalus. Transl Neurosci. 2020;11(1):60–74. doi:10.1515/tnsci-2020-0010
  • Xiao G, Chen Q, Zhang X. MicroRNA-455-5p/CPEB1 pathway mediates Aβ-related learning and memory deficits in a mouse model of Alzheimer’s disease. Brain Res Bull. 2021;177:282–294. doi:10.1016/j.brainresbull.2021.10.008
  • Shaw LM, Vanderstichele H, Knapik-Czajka M, et al. Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects. Ann Neurol. 2009;65(4):403–413. doi:10.1002/ana.21610
  • Larsson A, Arlig A, Bergh AC, et al. Quantitative SPECT cisternography in normal pressure hydrocephalus. Acta Neurol Scand. 1994;90(3):190–196. doi:10.1111/j.1600-0404.1994.tb02704.x
  • Abdelnour C, van Steenoven I, Londos E, et al. Alzheimer’s disease cerebrospinal fluid biomarkers predict cognitive decline in Lewy body dementia [published correction appears in Mov Disord. 2019 Apr;34(4):593]. Mov Disord. 2016;31(8):1203–1208. doi:10.1002/mds.26668
  • Wenning GK, Jellinger KA. The role of alpha-synuclein and tau in neurodegenerative movement disorders. Curr Opin Neurol. 2005;18(4):357–362. doi:10.1097/01.wco.0000168241.53853.32
  • Parnetti L, Tiraboschi P, Lanari A, et al. Cerebrospinal fluid biomarkers in Parkinson’s disease with dementia and dementia with Lewy bodies. Biol Psychiatry. 2008;64(10):850–855. doi:10.1016/j.biopsych.2008.02.016