233
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Comparison of Half-Effective Concentration of Propofol in Patients with Parkinson’s Disease and Non-Parkinson’s Disease

, , , ORCID Icon, , , & show all
Pages 307-315 | Received 28 Jun 2022, Accepted 13 Feb 2023, Published online: 28 Feb 2023

References

  • Bergman H, Deuschl G. Pathophysiology of Parkinson’s disease: from clinical neurology to basic neuroscience and back. Mov Disord. 2002;17:28–40. doi:10.1002/mds.10140
  • Siderowf A, Lang A. Pre-motor Parkinson’s disease: concepts and definitions. Mov Disord. 2012;27:608–616. doi:10.1002/mds.24954
  • Blaszczyk JW. Parkinson’s disease and neurodegeneration: GABA-collapse hypothesis. Front Neurosci. 2016;10:269. doi:10.3389/fnins.2016.00269
  • Brichta L, Greengard P, Flajolet M. Advances in the pharmacological treatment of Parkinson’s disease: targeting neurotransmitter systems. Trends Neurosci. 2013;36:543–554. doi:10.1016/j.tins.2013.06.003
  • Diogenes MJ, Dias RB, Rombo DM, et al. Extracellular alpha-synuclein oligomers modulate synaptic transmission and impair LTP via NMDA-receptor activation. J Neurosci. 2012;32:11750–11762. doi:10.1523/JNEUROSCI.0234-12.2012
  • Emir UE, Tuite PJ, Öz G. Elevated pontine and putamenal GABA levels in mild-moderate Parkinson disease detected by 7 tesla proton MRS. PloS One. 2012;7:30918. doi:10.1371/journal.pone.0030918
  • Abbott RJ, Pye I, Nahorski S. CSF and plasma GABA levels in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1982;45:253–256. doi:10.1136/jnnp.45.3.253
  • Stefani A, Fedele E, Vitek J, et al. The clinical efficacy of L-DOPA and STN-DBS share a common marker: reduced GABA content in the motor thalamus. Cell Death Dis. 2011;2:154. doi:10.1038/cddis.2011.35
  • Barone P. Neurotransmission in Parkinson’s disease: beyond dopamine. Eur J Neurol. 2010;17:364–376. doi:10.1111/j.1468-1331.2009.02900.x
  • Ciurleo R, Di Lorenzo G, Bramanti P, et al. Magnetic resonance spectroscopy: an in vivo molecular imaging biomarker for Parkinson’s disease? Biomed Res Int. 2014;2014:1–10. doi:10.1155/2014/519816
  • Ding S, Li L, Zhou FM. Nigral dopamine loss induces a global upregulation of presynaptic dopamine D1 receptor facilitation of the striatonigral GABAergic output. J Neurophysiol. 2015;113:1697–1711. doi:10.1152/jn.00752.2014
  • Elmaki EEA, Gong T, Nkonika DM, Wang G. Examining alterations in GABA concentrations in the basal ganglia of patients with Parkinson’s disease using MEGA‑PRESS MRS. Jpn J Radiol. 2018;36:194–199. doi:10.1007/s11604-017-0714-z
  • Kish SJ, Rajput A, Gilbert J, et al. Elevated gamma-aminobutyric acid level in striatal but not extrastriatal brain regions in Parkinson’s disease: correlation with striatal dopamine loss. Ann Neurol. 1986;20:26–31. doi:10.1002/ana.410200106
  • Chassain C, Bielicki G, Durand E, et al. Metabolic changes detected by proton magnetic resonance spectroscopy in vivo and in vitro in a murin model of Parkinson’s disease, the MPTP-intoxicated mouse. J Neurochem. 2008;105:874–882. doi:10.1111/j.1471-4159.2007.05185.x
  • Chassain C, Bielicki G, Keller C, et al. Metabolic changes detected in vivo by 1H MRS in the MPTP-intoxicated mouse. NMR Biomed. 2010;23:547–553. doi:10.1002/nbm.1504
  • Dharmadhikari S, Ma R, Yeh CL, et al. Striatal and thalamic GABA level concentrations play differential roles for the modulation of response selection processes by proprioceptive information. Neuroimage. 2015;120:36–42. doi:10.1016/j.neuroimage.2015.06.066
  • Ogura M, Nakao N, Nakai E, et al. The mechanism and effect of chronic electrical stimulation of the globus pallidus for treatment of Parkinson disease. J Neurosurg. 2004;100:997–1001. doi:10.3171/jns.2004.100.6.0997
  • Romuk E, Szczurek W, Nowak P, et al. Effects of propofol on oxidative stress parameters in selected parts of the brain in a rat model of Parkinson disease. Postepy Hig Med Dosw. 2016;70:1441–1450. doi:10.5604/17322693.1227841
  • Romuk E, Szczurek W, Nowak P, et al. Influence of propofol on oxidative-antioxidative system parameters in peripheral organs of rats with Parkinson disease. Postepy Hig Med Dosw. 2015;69:661–667. doi:10.5604/17322693.1156935
  • Yip GM, Chen ZW, Edge CJ, et al. A propofol binding site on mammalian GABAA receptors identified by photolabeling. Nat Chem Biol. 2013;9:715–720. doi:10.1038/nchembio.1340
  • Jayakar SS, Zhou X, Chiara DC, et al. Multiple propofol-binding sites in a gamma-aminobutyric acid type A receptor (GABAAR) identified using a photoreactive propofol analog. J Biol Chem. 2014;289:27456–27468. doi:10.1074/jbc.M114.581728
  • Bai D, Pennefather PS, MacDonald JF, et al. The general anesthetic propofol slows deactivation and desensitization of GABAA receptors. J Neurosci. 1999;19:10635–10646. doi:10.1523/jneurosci.19-24-10635.1999
  • Witkowska M, Karwacki Z, Rzaska M, et al. Comparison of target controlled infusion and total intravenous anaesthesia with propofol and remifentanil for lumbar microdiscectomy. Anaesthesiol Intensive Ther. 2012;44:138–144.
  • Koo BN, Lee JR, Noh GJ, et al. A pharmacodynamic analysis of factors affecting recovery from anesthesia with propofol-remifentanil target controlled infusion. Acta Pharmacol Sin. 2012;33:1080–1084. doi:10.1038/aps.2012.85
  • Yeganeh N, Roshani B, Latifi H, et al. Comparison of target-controlled infusion of sufentanil and remifentanil in blunting hemodynamic response to tracheal intubation. J Inj Violence Res. 2013;5:101–107. doi:10.5249/jivr.v5i2.325
  • Dussaussoy C, Peres M, Jaoul V, et al. Automated titration of propofol and remifentanil decreases the anesthesiologist’s workload during vascular or thoracic surgery: a randomized prospective study. J Clin Monit Comput. 2014;28:35–40. doi:10.1007/s10877-013-9453-6
  • Struys MM, De Smet T, Depoorter B, et al. Comparison of plasma compartment versus two methods for effect compartment-controlled target-controlled infusion for propofol. Anesthesiology. 2000;92:399. doi:10.1097/00000542-200002000-00021
  • Dixon WJ. Staircase bioassay: the up-and-down method. Neurosci Biobehav Rev. 1991;15:47–50. doi:10.1016/s0149-7634(05)80090-9
  • Xu XP, Yu XY, Wu X, et al. Propofol requirement for induction of unconsciousness is reduced in patients with Parkinson’s disease: a case control study. Biomed Res Int. 2015;2015:1–5. doi:10.1155/2015/953729
  • Dixon WJ, Mood AM. A method for obtaining and analyzing sensitivity data. J Am Stat Assoc. 1948;43:109–126. doi:10.1080/01621459.1948.10483254
  • Xuan G, Pinwen W, Honglin Z, et al. Determining hypnotic ED50 and EC50 of propofol and the influence of age in Chinese. J Clin Anesthesiol. 2002;18:7.
  • Pahapill PA, Lozano AM. The pedunculopontine nucleus and Parkinson’s disease. Brain. 2000;123:1767–1783. doi:10.1093/brain/123.9.1767
  • Tanaka Y, Niijima K, Mizuno Y, et al. Changes in gamma-aminobutyrate, glutamate, aspartate, glycine, and taurine contents in the striatum after unilateral nigrostriatal lesions in rats. Exp Neurol. 1986;91:259–268. doi:10.1016/0014-4886(86)90066-x
  • Bergman H, Wichmann T, Karmon B, et al. The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. J Neurophysiol. 1994;72:507–520. doi:10.1152/jn.1994.72.2.507
  • Chernick DA, Gillings D, Laine H, et al. Validity and reliability of the observer’s assessment of alertness/sedation scale: study with intravenous midazolam. J Clin Psychopharmacol. 1990;10:244.
  • Klopman MA, Sebel PS. Cost-effectiveness of bispectral index monitoring. Curr Opin Anaesthesiol. 2011;24:177–181. doi:10.1097/ACO.0b013e328343eb19
  • Orhon ZN, Devrim S, Celik M, et al. Comparison of recovery profiles of propofol and sevoflurane anesthesia with bispectral index monitoring in percutaneous nephrolithotomy. Korean J Anesthesiol. 2013;64:223. doi:10.4097/kjae.2013.64.3.223
  • Johansen JW. Update on bispectral index monitoring. Best Pract Res Clin Anaesthesiol. 2006;20:81–99. doi:10.1016/j.bpa.2005.08.004
  • Liu J, Singh H, White PF. Electroencephalographic bispectral correlates with intraoperative recall and depth of propofol-induced sedation. Anesth Analg. 1997;84:185–189. doi:10.1097/00000539-199701000-00033
  • Punjasawadwong Y, Phongchiewboon A, Bunchungmongkol N. Bispectral index for improving anaesthetic delivery and postoperative recovery. Cochrane Database Syst Rev. 2014. doi:10.1002/14651858.CD003843.pub3