264
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Autoimmunity and Frontotemporal Lobar Degeneration: From Laboratory Study to Clinical Practice

, , &
Pages 495-503 | Received 21 Oct 2022, Accepted 16 Mar 2023, Published online: 27 Mar 2023

References

  • Bang J, Spina S, Miller BL. Frontotemporal dementia. Lancet. 2015;386(10004):1672–1682. doi:10.1016/S0140-6736(15)00461-4
  • Vieira RT, Caixeta L, Machado S, et al. Epidemiology of early-onset dementia: a review of the literature. Clin Pract Epidemiol Ment Health. 2013;9:88–95. doi:10.2174/1745017901309010088
  • Hogan DB, Jetté N, Fiest KM, et al. The prevalence and incidence of frontotemporal dementia: a systematic review. Can J Neurol Sci. 2016;43(Suppl 1):S96–S109. doi:10.1017/cjn.2016.25
  • Kawano Y, Terada S, Takenoshita S, et al. Patient affect and caregiver burden in dementia. Psychogeriatrics. 2020;20(2):189–195. doi:10.1111/psyg.12487
  • Rosso SM, Donker Kaat L, Baks T, et al. Frontotemporal dementia in the Netherlands: patient characteristics and prevalence estimates from a population-based study. Brain. 2003;126(Pt 9):2016–2022. doi:10.1093/brain/awg204
  • Rohrer J, Guerreiro R, Vandrovcova J, et al. The heritability and genetics of frontotemporal lobar degeneration. Neurology. 2009;73(18):18. doi:10.1212/WNL.0b013e3181bf997a
  • Goldman JS, Farmer JM, Wood EM, et al. Comparison of family histories in FTLD subtypes and related tauopathies. Neurology. 2005;65(11):1817–1819. doi:10.1212/01.wnl.0000187068.92184.63
  • Seelaar H, Kamphorst W, Rosso SM, et al. Distinct genetic forms of frontotemporal dementia. Neurology. 2008;71(16):1220–1226. doi:10.1212/01.wnl.0000319702.37497.72
  • Le Ber I. Genetics of frontotemporal lobar degeneration: an up-date and diagnosis algorithm. Rev Neurol (Paris). 2013;169(10):811–819. doi:10.1016/j.neurol.2013.07.014
  • Zhang CC, Xing A, Tan MS, Tan L, Yu JT. The role of MAPT in neurodegenerative diseases: genetics, mechanisms and therapy. Mol Neurobiol. 2016;53(7):4893–4904. doi:10.1007/s12035-015-9415-8
  • Butzlaff M, Hannan SB, Karsten P, et al. Impaired retrograde transport by the dynein/dynactin complex contributes to tau-induced toxicity. Hum Mol Genet. 2015;24(13):3623–3637. doi:10.1093/hmg/ddv107
  • Galimberti D, Bonsi R, Fenoglio C, et al. Inflammatory molecules in frontotemporal dementia: cerebrospinal fluid signature of progranulin mutation carriers. Brain Behav Immun. 2015;49:182–187. doi:10.1016/j.bbi.2015.05.006
  • Sansan T, Jun L, Lan T, Jintai Y. Genetics of frontotemporal lobar degeneration: from the bench to the clinic. J Alzheimers Dis. 2016;52(4). doi:10.3233/JAD-160236
  • Gijselinck I, Van Mossevelde S, van der Zee J, et al. Loss of TBK1 is a frequent cause of frontotemporal dementia in a Belgian cohort. Neurology. 2015;85(24):2116–2125. doi:10.1212/WNL.0000000000002220
  • WattsGDJ, Wymer J, Kovach MJ, et al. Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat Genet. 2004;36(4):377–381. doi:10.1038/ng1332
  • Skibinski G, Parkinson NJ, Brown JM, et al. Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia. Nat Genet. 2005;37(8):806–808. doi:10.1038/ng1609
  • Rea SL, Majcher V, Searle MS, Layfield R. SQSTM1 mutations–bridging Paget disease of bone and ALS/FTLD. Exp Cell Res. 2014;325(1):27–37. doi:10.1016/j.yexcr.2014.01.020
  • Dillen L, Van Langenhove T, Engelborghs S, et al. Explorative genetic study of UBQLN2 and PFN1 in an extended Flanders-Belgian cohort of frontotemporal lobar degeneration patients. Neurobiol Aging. 2013;34(6):1711.e1–5. doi:10.1016/j.neurobiolaging.2012.12.007
  • Bannwarth S, Ait-El-Mkadem S, Chaussenot A, et al. A mitochondrial origin for frontotemporal dementia and amyotrophic lateral sclerosis through CHCHD10 involvement. Brain. 2014;137(Pt 8):2329–2345. doi:10.1093/brain/awu138
  • Van Mossevelde S, Engelborghs S, van der Zee J, Van Broeckhoven C. Genotype-phenotype links in frontotemporal lobar degeneration. Nat Rev Neurol. 2018;14(6):363–378. doi:10.1038/s41582-018-0009-8
  • Boeve BF, Boxer AL, Kumfor F, Pijnenburg Y, Rohrer JD. Advances and controversies in frontotemporal dementia: diagnosis, biomarkers, and therapeutic considerations. Lancet Neurol. 2022;21(3):258–272. doi:10.1016/S1474-4422(21)00341-0
  • Rascovsky K, Hodges JR, Knopman D, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain. 2011;134(Pt 9):2456–2477. doi:10.1093/brain/awr179
  • Gorno-Tempini ML, Hillis AE, Weintraub S, et al. Classification of primary progressive aphasia and its variants. Neurology. 2011;76(11):1006–1014. doi:10.1212/WNL.0b013e31821103e6
  • Masrori P, Van Damme P. Amyotrophic lateral sclerosis: a clinical review. Eur J Neurol. 2020;27(10):1918–1929. doi:10.1111/ene.14393
  • Burrell JR, Halliday GM, Kril JJ, et al. The frontotemporal dementia-motor neuron disease continuum. Lancet. 2016;388(10047):919–931. doi:10.1016/S0140-6736(16)00737-6
  • Deutschländer AB, Ross OA, Dickson DW, Wszolek ZK. Atypical parkinsonian syndromes: a general neurologist’s perspective. Eur J Neurol. 2018;25(1):41–58. doi:10.1111/ene.13412
  • Nissen MS, Ryding M, Meyer M, Blaabjerg M. Autoimmune encephalitis: current knowledge on subtypes, disease mechanisms and treatment. CNS Neurol Disord Drug Targets. 2020;19(8):584–598. doi:10.2174/1871527319666200708133103
  • Dürr M, Nissen G, Sühs KW, et al. CSF findings in acute NMDAR and LGI1 antibody-associated autoimmune encephalitis. Neurol Neuroimmunol Neuroinflamm. 2021;8(6):e1086. doi:10.1212/NXI.0000000000001086
  • Salama S, Khan M, Pardo S, Izbudak I, Levy M. MOG antibody-associated encephalomyelitis/encephalitis. Mult Scler. 2019;25(11):1427–1433. doi:10.1177/1352458519837705
  • Hinson SR, Lennon VA, Pittock SJ. Autoimmune AQP4 channelopathies and neuromyelitis optica spectrum disorders. Handb Clin Neurol. 2016;133:377–403. doi:10.1016/B978-0-444-63432-0.00021-9
  • Double KL, Rowe DB, Carew-Jones FM, et al. Anti-melanin antibodies are increased in sera in Parkinson’s disease. Exp Neurol. 2009;217(2):297–301. doi:10.1016/j.expneurol.2009.03.002
  • Papachroni KK, Ninkina N, Papapanagiotou A, et al. Autoantibodies to alpha-synuclein in inherited Parkinson’s disease. J Neurochem. 2007;101(3):749–756. doi:10.1111/j.1471-4159.2006.04365.x
  • Zappia M, Crescibene L, Bosco D, et al. Anti-GM1 ganglioside antibodies in Parkinson’s disease. Acta Neurol Scand. 2002;106(1):54–57. doi:10.1034/j.1600-0404.2002.01240.x
  • Gruden MA, Davidova TB, Malisauskas M, et al. Differential neuroimmune markers to the onset of Alzheimer’s disease neurodegeneration and dementia: autoantibodies to Abeta((25–35)) oligomers, S100b and neurotransmitters. J Neuroimmunol. 2007;186(1–2):181–192. doi:10.1016/j.jneuroim.2007.03.023
  • Wang L, Wang FS, Gershwin ME. Human autoimmune diseases: a comprehensive update. J Intern Med. 2015;278(4):369–395. doi:10.1111/joim.12395
  • Blank M, Barzilai O, Shoenfeld Y. Molecular mimicry and auto-immunity. Clin Rev Allergy Immunol. 2007;32(1):111–118. doi:10.1007/BF02686087
  • Vanderlugt CL, Miller SD. Epitope spreading in immune-mediated diseases: implications for immunotherapy. Nat Rev Immunol. 2002;2(2):85–95. doi:10.1038/nri724
  • Miller ZA, Rankin KP, Graff-Radford NR, et al. TDP-43 frontotemporal lobar degeneration and autoimmune disease. J Neurol Neurosurg Psychiatry. 2013;84(9):956–962. doi:10.1136/jnnp-2012-304644
  • Miller ZA, Sturm VE, Camsari GB, et al. Increased prevalence of autoimmune disease within C9 and FTD/MND cohorts: completing the picture. Neurol Neuroimmunol Neuroinflamm. 2016;3(6):e301. doi:10.1212/NXI.0000000000000301
  • Weintraub S, Fahey C, Johnson N, et al. Vasectomy in men with primary progressive aphasia. Cogn Behav Neurol. 2006;19(4):190–193. doi:10.1097/01.wnn.0000213923.48632.ab
  • Decker DA, Heilman KM. Steroid treatment of primary progressive aphasia. Arch Neurol. 2008;65(11):1533–1535. doi:10.1001/archneur.65.11.1533
  • Sotolongo JR. Immunological effects of vasectomy. J Urol. 1982;127(6):1063–1066. doi:10.1016/s0022-5347(17
  • Jacobson DL, Gange SJ, Rose NR, Graham NM. Epidemiology and estimated population burden of selected autoimmune diseases in the United States. Clin Immunol Immunopathol. 1997;84(3):223–243. doi:10.1006/clin.1997.4412
  • Rosso SM, Landweer EJ, Houterman M, Donker Kaat L, van Duijn CM, van Swieten JC. Medical and environmental risk factors for sporadic frontotemporal dementia: a retrospective case-control study. J Neurol Neurosurg Psychiatry. 2003;74(11):1574–1576. doi:10.1136/jnnp.74.11.1574
  • Ferrari R, Hernandez DG, Nalls MA, et al. Frontotemporal dementia and its subtypes: a genome-wide association study. Lancet Neurol. 2014;13(7):686–699. doi:10.1016/S1474-4422(14
  • Broce I, Karch CM, Wen N, et al. Immune-related genetic enrichment in frontotemporal dementia: an analysis of genome-wide association studies. PLoS Med. 2018;15(1):e1002487. doi:10.1371/journal.pmed.1002487
  • Tsai AP, Dong C, Lin PBC, et al. PLCG2 is associated with the inflammatory response and is induced by amyloid plaques in alzheimer’s disease. Genome Med. 2022;14(1):17. doi:10.1186/s13073-022-01022-0
  • Ombrello MJ, Remmers EF, Sun G, et al. Cold urticaria, immunodeficiency, and autoimmunity related to PLCG2 deletions. N Engl J Med. 2012;366(4):330–338. doi:10.1056/NEJMoa1102140
  • Yu P, Constien R, Dear N, et al. Autoimmunity and inflammation due to a gain-of-function mutation in phospholipase C gamma 2 that specifically increases external Ca2+ entry. Immunity. 2005;22(4):451–465. doi:10.1016/j.immuni.2005.01.018
  • Borders C, Sajjadi A. Association of inflammatory disorders with degenerative neuropathologies. Neurology. 2021;96(15SUPPL 1):1.
  • van der Lee SJ, Conway OJ, Jansen I, et al. A nonsynonymous mutation in PLCG2 reduces the risk of Alzheimer’s disease, dementia with Lewy bodies and frontotemporal dementia, and increases the likelihood of longevity. Acta Neuropathol. 2019;138(2):237–250. doi:10.1007/s00401-019-02026-8
  • Katisko K, Solje E, Koivisto AM, et al. Prevalence of immunological diseases in a Finnish frontotemporal lobar degeneration cohort with the C9orf72 repeat expansion carriers and non-carriers. J Neuroimmunol. 2018;321:29–35. doi:10.1016/j.jneuroim.2018.05.011
  • Katisko K, Kokkonen N, Krüger J, et al. The association between frontotemporal lobar degeneration and bullous pemphigoid. J Alzheimers Dis. 2018;66(2):743–750. doi:10.3233/JAD-180624
  • Atanasio A, Decman V, White D, et al. C9orf72 ablation causes immune dysregulation characterized by leukocyte expansion, autoantibody production, and glomerulonephropathy in mice. Sci Rep. 2016;6:23204. doi:10.1038/srep23204
  • Fredi M, Cavazzana I, Biasiotto G, et al. C9orf72 intermediate alleles in patients with amyotrophic lateral sclerosis, systemic Lupus erythematosus, and Rheumatoid arthritis. Neuromolecular Med. 2019;21(2):150–159. doi:10.1007/s12017-019-08528-8
  • Fredi M, Biasiotto G, Cavazzana I, et al. PS1:3 analysis of c9orf72 expansions in patients with systemic lupus erythematosus and rheumatoid arthritis: preliminary data. Lupus Sci Med. 2018;5(Suppl):1. doi:10.1136/lupus-2018-abstract.52
  • Boeve BF, Boylan KB, Graff-Radford NR, et al. Characterization of frontotemporal dementia and/or amyotrophic lateral sclerosis associated with the GGGGCC repeat expansion in C9ORF72. Brain. 2012;135(Pt 3):765–783. doi:10.1093/brain/aws004
  • Balendra R, Isaacs AM. C9orf72-mediated ALS and FTD: multiple pathways to disease. Nat Rev Neurol. 2018;14(9):544–558. doi:10.1038/s41582-018-0047-2
  • Burberry A, Wells MF, Limone F, et al. C9orf72 suppresses systemic and neural inflammation induced by gut bacteria. Nature. 2020;582(7810):89–94. doi:10.1038/s41586-020-2288-7
  • Ash PEA, Stanford EA, Al Abdulatif A, et al. Dioxins and related environmental contaminants increase TDP-43 levels. Mol Neurodegener. 2017;12(1):35. doi:10.1186/s13024-017-0177-9
  • Adani G, Filippini T, Garuti C, et al. Environmental risk factors for early-onset alzheimer’s dementia and frontotemporal dementia: a case-control study in Northern Italy. Int J Environ Res Public Health. 2020;17(21):7941. doi:10.3390/ijerph17217941
  • Dooley MA, Hogan SL. Environmental epidemiology and risk factors for autoimmune disease. Curr Opin Rheumatol. 2003;15(2):99–103. doi:10.1097/00002281-200303000-00002
  • Antonelli A, Ferrari SM, Ragusa F, et al. Graves’ disease: epidemiology, genetic and environmental risk factors and viruses. Best Pract Res Clin Endocrinol Metab. 2020;34(1):101387. doi:10.1016/j.beem.2020.101387
  • Alfredsson L, Olsson T. Lifestyle and environmental factors in multiple sclerosis. Cold Spring Harb Perspect Med. 2019;9(4):a028944. doi:10.1101/cshperspect.a028944
  • Dong YH, Fu DG. Autoimmune thyroid disease: mechanism, genetics and current knowledge. Eur Rev Med Pharmacol Sci. 2014;18(23):3611–3618.
  • Kaul A, Gordon C, Crow MK, et al. Systemic lupus erythematosus. Nat Rev Dis Primers. 2016;2(1):16039. doi:10.1038/nrdp.2016.39
  • Tremolizzo L, Bianchi E, Susani E, et al. Voluptuary habits and risk of frontotemporal dementia: a case control retrospective study. J Alzheimers Dis. 2017;60(2):335–340. doi:10.3233/JAD-170260
  • Williams RC, Malone CC, Silvestris F. Autoantibodies as chameleons. Scand J Rheumatol. 1997;26(2):73–78. doi:10.3109/03009749709115822
  • Benussi A, Alberici A, Buratti E, et al. Toward a glutamate hypothesis of frontotemporal dementia. Front Neurosci. 2019;13:304. doi:10.3389/fnins.2019.00304
  • Busse S, Brix B, Kunschmann R, Bogerts B, Stoecker W, Busse M. N-methyl-d-aspartate glutamate receptor (NMDA-R) antibodies in mild cognitive impairment and dementias. Neurosci Res. 2014;85:58–64. doi:10.1016/j.neures.2014.06.002
  • Italia M, Ferrari E, Di Luca M, Gardoni F. GluA3-containing AMPA receptors: from physiology to synaptic dysfunction in brain disorders. Neurobiol Dis. 2021;161:105539. doi:10.1016/j.nbd.2021.105539
  • Borroni B, Manes MA, Alberici A, et al. Autoimmune frontotemporal dementia: a new nosological entity? Alzheimer Dis Assoc Disord. 2017;31(3):259–262. doi:10.1097/WAD.0000000000000180
  • Borroni B, Stanic J, Verpelli C, et al. Anti-AMPA GluA3 antibodies in frontotemporal dementia: a new molecular target. Sci Rep. 2017;7(1):6723. doi:10.1038/s41598-017-06117-y
  • Scheggia D, Stanic J, Italia M, et al. GluA3 autoantibodies induce alterations in dendritic spine and behavior in mice. Brain Behav Immun. 2021;97:89–101. doi:10.1016/j.bbi.2021.07.001
  • Palese F, Bonomi E, Nuzzo T, et al. Anti-GluA3 antibodies in frontotemporal dementia: effects on glutamatergic neurotransmission and synaptic failure. Neurobiol Aging. 2020;86:143–155. doi:10.1016/j.neurobiolaging.2019.10.015
  • Arshad F, Varghese F, Paplikar A, et al. Role of autoantibodies in neurodegenerative dementia: an emerging association. Dement Geriatr Cogn Disord. 2021;50(2):153–160. doi:10.1159/000517238
  • Cavazzana I, Alberici A, Bonomi E, et al. Antinuclear antibodies in frontotemporal dementia: the tip’s of autoimmunity iceberg? J Neuroimmunol. 2018;325:61–63. doi:10.1016/j.jneuroim.2018.10.006
  • Bosch X. Progranulin: a growth factor, a novel TNFR ligand and a drug target. Pharmacol Ther. 2012;133(1):124–132. doi:10.1016/j.pharmthera.2011.10.003
  • Hu Y, Xiao H, Shi T, Oppenheim JJ, Chen X. Progranulin promotes tumour necrosis factor-induced proliferation of suppressive mouse CD4+ Foxp3+ regulatory T cells. Immunology. 2014;142(2):193–201. doi:10.1111/imm.12241
  • Thurner L, Preuss KD, Fadle N, et al. Progranulin antibodies in autoimmune diseases. J Autoimmun. 2013;42:29–38. doi:10.1016/j.jaut.2012.10.003
  • Conti E, Sala G, Diamanti S, et al. Serum naturally occurring anti-TDP-43 auto-antibodies are increased in amyotrophic lateral sclerosis. Sci Rep. 2021;11(1):1978. doi:10.1038/s41598-021-81599-5
  • Nielsen AK, Folke J, Owczarek S, et al. TDP-43-specific autoantibody decline in patients with amyotrophic lateral sclerosis. Neurol Neuroimmunol Neuroinflamm. 2021;8(2):e937. doi:10.1212/NXI.0000000000000937
  • Younes K, Lepow LA, Estrada C, Schulz PE. Auto-antibodies against P/Q- and N-type voltage-dependent calcium channels mimicking frontotemporal dementia. SAGE Open Med Case Rep. 2018;6:2050313X17750928. doi:10.1177/2050313X17750928
  • Kotagal V, Lorincz MT, Bohnen NI. A frontotemporal dementia-like syndrome mimicking postpartum depression detected by 18F fluorodeoxyglucose positron emission tomography. Clin Nucl Med. 2012;37(9):e223–e224. doi:10.1097/RLU.0b013e31824440a1
  • Freund B, Maddali M, Lloyd TE. A case of Morvan syndrome mimicking amyotrophic lateral sclerosis with frontotemporal dementia. J Clin Neuromuscul Dis. 2016;17(4):207–211. doi:10.1097/CND.0000000000000118
  • Young JJ, Lavakumar M, Tampi D, Balachandran S, Tampi RR. Frontotemporal dementia: latest evidence and clinical implications. Ther Adv Psychopharmacol. 2018;8(1):33–48. doi:10.1177/2045125317739818
  • Leypoldt F, Gelderblom M, Schöttle D, Hoffmann S, Wandinger KP. Recovery from severe frontotemporal dysfunction at 3 years after N-methyl-d-aspartic acid (NMDA) receptor antibody encephalitis. J Clin Neurosci. 2013;20(4):611–613. doi:10.1016/j.jocn.2012.03.036