381
Views
4
CrossRef citations to date
0
Altmetric
REVIEW

Pathophysiological Association of Alzheimer’s Disease and Hypertension: A Clinical Concern for Elderly Population

, , , , & ORCID Icon
Pages 713-728 | Received 29 Dec 2022, Accepted 22 Apr 2023, Published online: 05 May 2023

References

  • Association A. Alzheimer’s disease facts and figures. Alzheimers Dement. 2019;15(3):321–387.
  • Gustavsson A, Norton N, Fast T, et al. Global estimates on the number of persons across the Alzheimer’s disease continuum. Alzheimers Dement. 2023;19(2):658–670. doi:10.1002/alz.12694
  • Wong W. Economic burden of Alzheimer disease and managed care considerations. Am J Manag Care. 2020;26(8 Suppl):S177–S183.
  • Vaz M, Silvestre S. Alzheimer’s disease: recent treatment strategies. Eur J Pharmacol. 2020;887:173554. doi:10.1016/j.ejphar.2020.173554
  • Stephan BC, Pakpahan E, Siervo M, et al. Prediction of dementia risk in low-income and middle-income countries (the 10/66 Study): an independent external validation of existing models. Lancet Global Health. 2020;8(4):e524–e535. doi:10.1016/S2214-109X(20)30062-0
  • Ju Y, Tam KY. Pathological mechanisms and therapeutic strategies for Alzheimer’s disease. Neural Regener Res. 2022;17(3):543. doi:10.4103/1673-5374.320970
  • Silva MVF, Loures CDMG, Alves LCV, et al. Alzheimer’s disease: risk factors and potentially protective measures. J Biomed Sci. 2019;26(1):1–11. doi:10.1186/s12929-019-0524-y
  • Zhang -X-X, Tian Y, Wang Z-T, et al. The epidemiology of Alzheimer’s disease modifiable risk factors and prevention. J Prevent Alzheimer’s Dis. 2021;8:313–321. doi:10.14283/jpad.2021.15
  • Lennon MJ, Makkar SR, Crawford JD, et al. Midlife hypertension and Alzheimer’s disease: a systematic review and meta-analysis. J Alzheimer’s Dis. 2019;71(1):307–316. doi:10.3233/JAD-190474
  • Livingston G, Sommerlad A, Orgeta V, et al. Dementia prevention, intervention, and care. Lancet. 2017;390(10113):2673–2734.
  • Baranowski BJ, Marko DM, Fenech RK, et al. Healthy brain, healthy life: a review of diet and exercise interventions to promote brain health and reduce Alzheimer’s disease risk. Appl Physiol Nutr Metabol. 2020;45(10):1055–1065. doi:10.1139/apnm-2019-0910
  • Sagud M, Tudor L, Pivac N. Personalized treatment interventions: nonpharmacological and natural treatment strategies in Alzheimer’s disease. Expert Rev Neurother. 2021;21(5):571–589. doi:10.1080/14737175.2021.1906223
  • Cordone S, Scarpelli S, Alfonsi V, et al. Sleep-based interventions in Alzheimer’s disease: promising approaches from prevention to treatment along the disease trajectory. Pharmaceuticals. 2021;14(4):383. doi:10.3390/ph14040383
  • Lennon MJ, Koncz R, Sachdev PS. Hypertension and Alzheimer’s disease: is the picture any clearer? Curr Opin Psychiatry. 2021;34(2):142–148. doi:10.1097/YCO.0000000000000684
  • Nyúl-Tóth Á, Tarantini S, Kiss T, et al. Increases in hypertension-induced cerebral microhemorrhages exacerbate gait dysfunction in a mouse model of Alzheimer’s disease. Geroscience. 2020;42(6):1685–1698. doi:10.1007/s11357-020-00256-3
  • de Oliveira LDSSCB, Souza EC, Rodrigues RAS, et al. The effects of physical activity on anxiety, depression, and quality of life in elderly people living in the community. Trends Psychiatry Psychother. 2019;41(p):36–42. doi:10.1590/2237-6089-2017-0129
  • Diao D, Diao F, Xiao B, et al. Bayes conditional probability-based causation analysis between gestational diabetes mellitus (gdm) and pregnancy-induced hypertension (PIH): a statistic case study in Harbin, China. J Diabetes Res. 2022;2022. doi:10.1155/2022/2590415
  • Pan Z-Y, Zhong HJ, Huang DN, Wu LH, He XX. Beneficial effects of repeated washed microbiota transplantation in children with autism. Front Pediatr. 2022;971. doi:10.3389/fped.2022.928785
  • Martins G, Corrêa L, Caparrol AJDS, et al. Sociodemographic and health characteristics of formal and informal caregivers of elderly people with Alzheimer’s Disease. Escola Anna Nery. 2019;23(2). doi:10.1590/2177-9465-ean-2018-0327
  • Wang H, Wang K, Xue Q, et al. Transcranial alternating current stimulation for treating depression: a randomized controlled trial. Brain. 2022;145(1):83–91. doi:10.1093/brain/awab252
  • Dafsari FS, Jessen F. Depression—an underrecognized target for prevention of dementia in Alzheimer’s disease. Transl Psychiatry. 2020;10(1):160. doi:10.1038/s41398-020-0839-1
  • Jeon SY, Byun MS, Yi D, et al. Influence of hypertension on brain amyloid deposition and Alzheimer’s disease signature neurodegeneration. Neurobiol Aging. 2019;75:62–70. doi:10.1016/j.neurobiolaging.2018.11.001
  • Scheltens P, De Strooper B, Kivipelto M, et al. Alzheimer’s disease. Lancet. 2021;397(10284):1577–1590. doi:10.1016/S0140-6736(20)32205-4
  • Matej R, Tesar A, Rusina R. Alzheimer’s disease and other neurodegenerative dementias in comorbidity: a clinical and neuropathological overview. Clin Biochem. 2019;73:26–31. doi:10.1016/j.clinbiochem.2019.08.005
  • Porsteinsson A, Isaacson RS, Knox S, et al. Diagnosis of early Alzheimer’s disease: clinical practice in 2021. J Prevent Alzheimer’s Dis. 2021;8:371–386. doi:10.14283/jpad.2021.23
  • Ayre K, Krishnamoorthy G. 3.1 How the brain develops. In: Trauma Informed Behaviour Support: A Practical Guide to Developing Resilient Learners. University of Southern Queensland; 2020.
  • Ismail Z, Black SE, Camicioli R, et al. Recommendations of the 5th Canadian Consensus Conference on the diagnosis and treatment of dementia. Alzheimers Dement. 2020;16(8):1182–1195. doi:10.1002/alz.12105
  • Ashrafian H, Zadeh EH, Khan RH. Review on Alzheimer’s disease: inhibition of amyloid beta and tau tangle formation. Int J Biol Macromol. 2021;167:382–394. doi:10.1016/j.ijbiomac.2020.11.192
  • Vogel JW, Iturria-Medina Y, Strandberg OT, et al. Spread of pathological tau proteins through communicating neurons in human Alzheimer’s disease. Nat Commun. 2020;11(1):2612. doi:10.1038/s41467-020-15701-2
  • Volicer L. Physiological and pathological functions of beta-amyloid in the brain and Alzheimer’s disease: a review. Chin J Physiol. 2020;63(3):95. doi:10.4103/CJP.CJP_10_20
  • Karran E, De Strooper B. The amyloid hypothesis in Alzheimer disease: new insights from new therapeutics. Nat Rev Drug Discov. 2022;21(4):306–318. doi:10.1038/s41573-022-00391-w
  • Hampel H, Vassar R, De Strooper B, et al. The β-secretase BACE1 in Alzheimer’s disease. Biol Psychiatry. 2021;89(8):745–756. doi:10.1016/j.biopsych.2020.02.001
  • Babusikova E, Dobrota D, Turner AJ, et al. Effect of global brain ischemia on amyloid precursor protein metabolism and expression of amyloid-degrading enzymes in rat cortex: role in pathogenesis of Alzheimer’s disease. Biochemistry. 2021;86(6):680–692. doi:10.1134/S0006297921060067
  • Guo Y, Wang Q, Chen S, et al. Functions of amyloid precursor protein in metabolic diseases. Metabolism. 2021;115:154454. doi:10.1016/j.metabol.2020.154454
  • Leong YQ, Ng KY, Chye SM, et al. Mechanisms of action of amyloid-beta and its precursor protein in neuronal cell death. Metab Brain Dis. 2020;35(1):11–30. doi:10.1007/s11011-019-00516-y
  • Flores J, Noël A, Fillion M-L, et al. Therapeutic potential of Nlrp1 inflammasome, Caspase-1, or Caspase-6 against Alzheimer disease cognitive impairment. Cell Death Differ. 2022;29(3):657–669. doi:10.1038/s41418-021-00881-1
  • Sharma VK, Singh TG, Singh S, et al. Apoptotic pathways and Alzheimer’s disease: probing therapeutic potential. Neurochem Res. 2021;46(12):3103–3122. doi:10.1007/s11064-021-03418-7
  • Seubert P, Oltersdorf T, Lee MG, et al. Secretion of β-amyloid precursor protein cleaved at the amino terminus of the β-amyloid peptide. Nature. 1993;361(6409):260–263. doi:10.1038/361260a0
  • Hashimoto M, Rockenstein E, Crews L, et al. Role of protein aggregation in mitochondrial dysfunction and neurodegeneration in Alzheimer’s and Parkinson’s diseases. Neuromolecular Med. 2003;4:21–35. doi:10.1385/NMM:4:1-2:21
  • Peng C, Trojanowski JQ, Lee VM-Y. Protein transmission in neurodegenerative disease. Nat Rev Neurol. 2020;16(4):199–212. doi:10.1038/s41582-020-0333-7
  • Holtzman DM, Herz J, Bu G. Apolipoprotein E and apolipoprotein E receptors: normal biology and roles in Alzheimer disease. Cold Spring Harb Perspect Med. 2012;2(3):a006312. doi:10.1101/cshperspect.a006312
  • Bu G. Apolipoprotein E and its receptors in Alzheimer’s disease: pathways, pathogenesis and therapy. Nat Rev Neurosci. 2009;10(5):333–344. doi:10.1038/nrn2620
  • Zhang X, Qu -Y-Y, Liu L, et al. Homocysteine inhibits pro-insulin receptor cleavage and causes insulin resistance via protein cysteine-homocysteinylation. Cell Rep. 2021;37(2):109821. doi:10.1016/j.celrep.2021.109821
  • Johnstone M, Gearing AJ, Miller KM. A central role for astrocytes in the inflammatory response to β-amyloid; chemokines, cytokines and reactive oxygen species are produced. J Neuroimmunol. 1999;93(1–2):182–193. doi:10.1016/S0165-5728(98)00226-4
  • Ramesh G, MacLean AG, Philipp MT. Cytokines and chemokines at the crossroads of neuroinflammation, neurodegeneration, and neuropathic pain. Mediators Inflamm. 2013;2013:1–20. doi:10.1155/2013/480739
  • Alberghina L, Colangelo AM. The modular systems biology approach to investigate the control of apoptosis in Alzheimer’s disease neurodegeneration. BMC Neurosci. 2006;7:1–26. doi:10.1186/1471-2202-7-S1-S2
  • Gunn AP, Wong BX, Johanssen T, et al. Amyloid-β peptide Aβ3pE-42 induces lipid peroxidation, membrane permeabilization, and calcium influx in neurons. J Biol Chem. 2016;291(12):6134–6145. doi:10.1074/jbc.M115.655183
  • Gan X, Huang S, Wu L, et al. Inhibition of ERK-DLP1 signaling and mitochondrial division alleviates mitochondrial dysfunction in Alzheimer’s disease cybrid cell. Biochim Biophys Acta. 2014;1842(2):220–231. doi:10.1016/j.bbadis.2013.11.009
  • Zeng Q, Bie B, Guo Q, et al. Hyperpolarized Xe NMR signal advancement by metal-organic framework entrapment in aqueous solution. Proce Natl Acad Sci. 2020;117(30):17558–17563. doi:10.1073/pnas.2004121117
  • Hooper C, Killick R, Lovestone S. The GSK3 hypothesis of Alzheimer’s disease. J Neurochem. 2008;104(6):1433–1439. doi:10.1111/j.1471-4159.2007.05194.x
  • Town T, Zolton J, Shaffner R, et al. p35/Cdk5 pathway mediates soluble amyloid‐β peptide‐induced tau phosphorylation in vitro. J Neurosci Res. 2002;69(3):362–372. doi:10.1002/jnr.10299
  • Das A, Dikshit M, Nath C. Role of molecular isoforms of acetylcholinesterase in learning and memory functions. Pharmacol Biochem Behav. 2005;81(1):89–99. doi:10.1016/j.pbb.2005.02.006
  • Tiwari P, Dwivedi S, Singh MP, et al. Basic and modern concepts on cholinergic receptor: a review. Asian Pacific J Trop Dis. 2013;3(5):413–420. doi:10.1016/S2222-1808(13)60094-8
  • Hampel H, Mesulam -M-M, Cuello AC, et al. Khachaturian. Brain: a Journal of Neurology. 2018;141(7):1917–1933. doi:10.1093/brain/awy132
  • Plant C, Teipel SJ, Oswald A, et al. Automated detection of brain atrophy patterns based on MRI for the prediction of Alzheimer’s disease. Neuroimage. 2010;50(1):162–174. doi:10.1016/j.neuroimage.2009.11.046
  • Rami L, Sala-Llonch R, Solé-Padullés C, et al. Distinct functional activity of the precuneus and posterior cingulate cortex during encoding in the preclinical stage of Alzheimer’s disease. J Alzheimer’s Dis. 2012;31(3):517–526. doi:10.3233/JAD-2012-120223
  • Rodriguez RD, Grinberg LT. Argyrophilic grain disease: an underestimated tauopathy. Dement Neuropsychol. 2015;9(1):2–8. doi:10.1590/S1980-57642015DN91000002
  • Wang F, Wang H, Zhou X, et al. A driving fatigue feature detection method based on multifractal theory. IEEE Sens J. 2022;22(19):19046–19059. doi:10.1109/JSEN.2022.3201015
  • Abner EL, Neltner JH, Jicha GA, et al. Diffuse amyloid-β plaques, neurofibrillary tangles, and the impact of APOE in elderly persons’ brains lacking neuritic amyloid plaques. J Alzheimer’s Dis. 2018;64(4):1307–1324. doi:10.3233/JAD-180514
  • Ferrer I, Santpere G, van Leeuwen FW. Argyrophilic grain disease. Brain. 2008;131(6):1416–1432. doi:10.1093/brain/awm305
  • Togo T, Isojima D, Akatsu H, et al. Clinical features of argyrophilic grain disease: a retrospective survey of cases with neuropsychiatric symptoms. Am J Geriatric Psychiatry. 2005;13(12):1083–1091. doi:10.1097/00019442-200512000-00008
  • Zhang K, Yang Y, Ge H, et al. Neurogenesis and Proliferation of neural stem/progenitor cells conferred by artesunate via FOXO3a/p27Kip1 Axis in mouse stroke model. Mol Neurobiol. 2022;59(8):4718–4729. doi:10.1007/s12035-021-02710-5
  • Petersen RC, Parisi JE, Dickson DW, et al. Neuropathologic features of amnestic mild cognitive impairment. Arch Neurol. 2006;63(5):665–672. doi:10.1001/archneur.63.5.665
  • Saito Y, Murayama S. Neuropathology of mild cognitive impairment. Neuropathology. 2007;27(6):578–584. doi:10.1111/j.1440-1789.2007.00806.x
  • Brouwers S, Sudano I, Kokubo Y, et al. Arterial hypertension. Lancet. 2021;398(10296):249–261. doi:10.1016/S0140-6736(21)00221-X
  • Twagirumukiza M, De Bacquer D, Kips JG, et al. Current and projected prevalence of arterial hypertension in sub-Saharan Africa by sex, age and habitat: an estimate from population studies. J Hypertens. 2011;29(7):1243–1252. doi:10.1097/HJH.0b013e328346995d
  • Snarska K, Chorąży M, Szczepański M, et al. Quality of life of patients with arterial hypertension. Medicina. 2020;56(9):459. doi:10.3390/medicina56090459
  • Valenzuela PL, Carrera-Bastos P, Gálvez BG, et al. Lifestyle interventions for the prevention and treatment of hypertension. Nat Rev Cardiol. 2021;18(4):251–275. doi:10.1038/s41569-020-00437-9
  • Noubiap JJ, Nansseu JR, Nyaga UF, et al. Global prevalence of resistant hypertension: a meta-analysis of data from 3.2 million patients. Heart. 2019;105(2):98–105. doi:10.1136/heartjnl-2018-313599
  • Zeng Z, Chen J, Xiao C, Chen W. A global view on prevalence of hypertension and human develop index. Ann Global Health. 2020;86(1):67.
  • Schutte AE, Srinivasapura Venkateshmurthy N, Mohan S, et al. Hypertension in low-and middle-income countries. Circ Res. 2021;128(7):808–826. doi:10.1161/CIRCRESAHA.120.318729
  • Macquart de Terline D, Kane A, Kramoh KE, et al. Factors associated with poor adherence to medication among hypertensive patients in twelve low and middle income Sub-Saharan countries. PLoS One. 2019;14(7):e0219266. doi:10.1371/journal.pone.0219266
  • Uchmanowicz I, Markiewicz K, Uchmanowicz B, et al. The relationship between sleep disturbances and quality of life in elderly patients with hypertension. Clin Interv Aging. 2019;Volume 14:155–165. doi:10.2147/CIA.S188499
  • Liu P, Shi J, Wang Z-A. Pattern formation of the attraction-repulsion Keller-Segel system. Discrete Continuous Dyn Syst Ser B. 2013;18(10):2597. doi:10.3934/dcdsb.2013.18.2597
  • Yamazaki D, Hitomi H, Nishiyama A. Hypertension with diabetes mellitus complications. Hyperten Res. 2018;41(3):147–156. doi:10.1038/s41440-017-0008-y
  • Vidal-Petiot E, Greenlaw N, Ford I, et al. Relationships between components of blood pressure and cardiovascular events in patients with stable coronary artery disease and hypertension. Hypertension. 2018;71(1):168–176. doi:10.1161/HYPERTENSIONAHA.117.10204
  • Jin H-Y, Wang Z-A. Global stabilization of the full attraction-repulsion Keller-Segel system. arXiv preprint arXiv:1905 05990; 2019.
  • Jamerson KA, Nasser SA, Ferdinand KC. Cardiovascular disease in minorities: unique considerations: hypertension in African and Hispanic Americans. Cardiovascular Disease in Racial and Ethnic Minority Populations. Springer. 2021:159–166.
  • Costa SDM, Lima CDA, Nobre ALCSD, et al. Hypertension bearers with high risk/big risk of cardiovascular diseases and socioeconomic and health indicators. Revista da Associação Médica Brasileira. 2018;64(p):601–610. doi:10.1590/1806-9282.64.07.601
  • Mills KT, Stefanescu A, He J. The global epidemiology of hypertension. Nat Rev Nephrol. 2020;16(4):223–237. doi:10.1038/s41581-019-0244-2
  • Mollan SP, Aguiar M, Evison F, et al. The expanding burden of idiopathic intracranial hypertension. Eye. 2019;33(3):478–485. doi:10.1038/s41433-018-0238-5
  • Jin H-Y, Wang Z-A. Boundedness, blowup and critical mass phenomenon in competing chemotaxis. J Differ Equ. 2016;260(1):162–196. doi:10.1016/j.jde.2015.08.040
  • Kirkland EB, Heincelman M, Bishu KG, et al. Trends in healthcare expenditures among US adults with hypertension: national estimates, 2003–2014. J Am Heart Assoc. 2018;7(11):e008731. doi:10.1161/JAHA.118.008731
  • Jin HY, Wang ZA. Asymptotic dynamics of the one‐dimensional attraction–repulsion Keller–Segel model. Math Methods Appl Sci. 2015;38(3):444–457. doi:10.1002/mma.3080
  • Foy AJ, Mandrola JM. Heavy heart: the economic burden of heart disease in the United States Now and in the future. Prim Care. 2018;45(1):17–24. doi:10.1016/j.pop.2017.11.002
  • Wiinberg N, Høegholm A, Christensen HR, et al. 24-h ambulatory blood pressure in 352 normal Danish subjects, related to age and gender. Am J Hypertens. 1995;8(10):978–986. doi:10.1016/0895-7061(95)00216-2
  • Jennings JR, Zanstra Y. Is the brain the essential in hypertension? Neuroimage. 2009;47(3):914–921. doi:10.1016/j.neuroimage.2009.04.072
  • Korner PI. Essential Hypertension and Its Causes: Neural and Non-Neural Mechanisms. Oxford University Press; 2007.
  • Harvey A, Montezano AC, Lopes RA, et al. Vascular fibrosis in aging and hypertension: molecular mechanisms and clinical implications. Can J Cardiol. 2016;32(5):659–668. doi:10.1016/j.cjca.2016.02.070
  • Meissner A. Hypertension and the brain: a risk factor for more than heart disease. Cerebrovasc Sis. 2016;42(3–4):255–262. doi:10.1159/000446082
  • Wong TY, Klein R, Sharrett AR, et al. Retinal arteriolar diameter and risk for hypertension. Ann Intern Med. 2004;140(4):248–255. doi:10.7326/0003-4819-140-4-200402170-00006
  • Gorelick PB, Scuteri A, Black SE, et al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American Heart Association/American Stroke Association. stroke. 2011;42(9):2672–2713. doi:10.1161/STR.0b013e3182299496
  • Petrou P, Gothelf Y, Argov Z, et al. Safety and clinical effects of mesenchymal stem cells secreting neurotrophic factor transplantation in patients with amyotrophic lateral sclerosis: results of Phase 1/2 and 2a clinical trials. JAMA Neurol. 2016;73(3):337–344. doi:10.1001/jamaneurol.2015.4321
  • Shang X, Hill E, Zhu Z, et al. The association of age at diagnosis of hypertension with brain structure and incident dementia in the UK Biobank. Hypertension. 2021;78(5):1463–1474. doi:10.1161/HYPERTENSIONAHA.121.17608
  • Ungvari Z, Toth P, Tarantini S, et al. Hypertension-induced cognitive impairment: from pathophysiology to public health. Nat Rev Nephrol. 2021;17(10):639–654. doi:10.1038/s41581-021-00430-6
  • Aam S, Gynnild MN., Munthe-Kaas R, et al. The impact of vascular risk factors on post-stroke cognitive impairment: the Nor-COAST study. Front Neurol. 2021;1083. doi:10.3389/fneur.2021.678794
  • Sierra C. Hypertension and the risk of dementia. Front Cardiovasc Med. 2020;7:5. doi:10.3389/fcvm.2020.00005
  • Abell JG, Kivimäki M, Dugravot A, et al. Association between systolic blood pressure and dementia in the Whitehall II cohort study: role of age, duration, and threshold used to define hypertension. Eur Heart J. 2018;39(33):3119–3125. doi:10.1093/eurheartj/ehy288
  • Gottesman RF, Seshadri S. Risk factors, lifestyle behaviors, and vascular brain health. Stroke. 2022;53(2):394–403. doi:10.1161/STROKEAHA.121.032610
  • Li G, Rhew IC, Shofer JB, et al. Age‐varying association between blood pressure and risk of dementia in those aged 65 and older: a community‐based prospective cohort study. J Am Geriatr Soc. 2007;55(8):1161–1167. doi:10.1111/j.1532-5415.2007.01233.x
  • Wetterberg H, Najar J, Rydén L, et al. Blood pressure at the age of 70 as a predictor of incident dementia: a 15‐year longitudinal study: epidemiology/Risk and protective factors in MCI and dementia. Alzheimers Dement. 2020;16:e045841. doi:10.1002/alz.045841
  • Rutherford BR, Brewster K, Golub JS, et al. Sensation and psychiatry: linking age-related hearing loss to late-life depression and cognitive decline. Am J Psychiatry. 2018;175(3):215–224. doi:10.1176/appi.ajp.2017.17040423
  • Thorin-Trescases N, de Montgolfier O, Pinçon A, et al. Impact of pulse pressure on cerebrovascular events leading to age-related cognitive decline. Am J Physiol. 2018;314(6):H1214–H1224. doi:10.1152/ajpheart.00637.2017
  • Johnson EE, Alexander C, Lee GJ, et al. Examination of race and gender differences in predictors of neuropsychological decline and development of Alzheimer’s disease. Clin Neuropsychol. 2022;36(2):327–352. doi:10.1080/13854046.2021.1940299
  • Joo SH, Yun SH, Kang DW, et al. Body mass index in mild cognitive impairment according to age, sex, cognitive intervention, and hypertension and risk of progression to Alzheimer’s disease. Frontiers in Psychiatry. 2018;9:142. doi:10.3389/fpsyt.2018.00142
  • Gilsanz P, Mayeda ER, Glymour MM, et al. Female sex, early-onset hypertension, and risk of dementia. Neurology. 2017;89(18):1886–1893. doi:10.1212/WNL.0000000000004602
  • Forcaia G, Formicola B, Terribile G, et al. Multifunctional liposomes modulate purinergic receptor-induced calcium wave in cerebral microvascular endothelial cells and astrocytes: new insights for Alzheimer’s disease. Mol Neurobiol. 2021;58(6):2824–2835. doi:10.1007/s12035-021-02299-9
  • Myers DR, Lam WA. Vascularized microfluidics and their untapped potential for discovery in diseases of the microvasculature. Annu Rev Biomed Eng. 2021;23(1):407–432. doi:10.1146/annurev-bioeng-091520-025358
  • Uddin MS, Rahman MA, Kabir MT, et al. Multifarious roles of mTOR signaling in cognitive aging and cerebrovascular dysfunction of AlzheimerAlzheimer’s disease. Iubmb Life. 2020;72(9):1843–1855. doi:10.1002/iub.2324
  • Ramos-Cejudo J, Wisniewski T, Marmar C, et al. Traumatic brain injury and Alzheimer’s disease: the cerebrovascular link. EBioMedicine. 2018;28:21–30. doi:10.1016/j.ebiom.2018.01.021
  • Cheng Y-W, Chiu MJ, Chen YF, Cheng TW, Lai YM, Chen TF. The contribution of vascular risk factors in neurodegenerative disorders: from mild cognitive impairment to Alzheimer’s disease. Alzheimer’s Res Ther. 2020;12(1):1–10.
  • Tariq S, Barber PA. Dementia risk and prevention by targeting modifiable vascular risk factors. J Neurochem. 2018;144(5):565–581. doi:10.1111/jnc.14132
  • He J-T, Zhao X, Xu L, et al. Vascular risk factors and Alzheimer’s disease: blood-brain barrier disruption, metabolic syndromes, and molecular links. J Alzheimer’s Dis. 2020;73(1):39–58. doi:10.3233/JAD-190764
  • Mosconi L, Walters M, Sterling J, et al. Lifestyle and vascular risk effects on MRI-based biomarkers of Alzheimer’s disease: a cross-sectional study of middle-aged adults from the broader New York City area. BMJ open. 2018;8(3):e019362. doi:10.1136/bmjopen-2017-019362
  • Cheng G, He S, He Q, et al. Trajectory patterns of blood pressure change up to six years and the risk of dementia: a nationwide cohort study. Aging. 2021;13(13):17380. doi:10.18632/aging.203228
  • Tarantini S, Tucsek Z, Valcarcel-Ares MN, et al. Circulating IGF-1 deficiency exacerbates hypertension-induced microvascular rarefaction in the mouse hippocampus and retrosplenial cortex: implications for cerebromicrovascular and brain aging. Age. 2016;38(4):273–289. doi:10.1007/s11357-016-9931-0
  • Bowman GL, Dayon L, Kirkland R, et al. Blood-brain barrier breakdown, neuroinflammation, and cognitive decline in older adults. Alzheimers Dement. 2018;14(12):1640–1650. doi:10.1016/j.jalz.2018.06.2857
  • Liao Y, Fan Y, He Q, et al. Exogenous H2S ameliorates high salt-induced hypertension by alleviating oxidative stress and inflammation in the paraventricular nucleus in Dahl S rats. Cardiovasc Toxicol. 2022;22(5):477–491. doi:10.1007/s12012-022-09729-7
  • Jiang E, Chapp AD, Fan Y, et al. Expression of proinflammatory cytokines is upregulated in the hypothalamic paraventricular nucleus of dahl salt-sensitive hypertensive rats. Front Physiol. 2018;9:104. doi:10.3389/fphys.2018.00104
  • Fang X, Crumpler RF, Thomas KN, et al. Contribution of cerebral microvascular mechanisms to age-related cognitive impairment and dementia. Physiol Int. 2022;109(1):20–30. doi:10.1556/2060.2022.00020
  • Park L, Zhou P, Koizumi K, et al. Brain and circulating levels of Aβ1–40 differentially contribute to vasomotor dysfunction in the mouse brain. Stroke. 2013;44(1):198–204. doi:10.1161/STROKEAHA.112.670976
  • Park L, Koizumi K, El Jamal S, et al. Age-dependent neurovascular dysfunction and damage in a mouse model of cerebral amyloid angiopathy. Stroke. 2014;45(6):1815–1821. doi:10.1161/STROKEAHA.114.005179
  • Bertsch M, Franchi B, Meacci L, et al. The amyloid cascade hypothesis and Alzheimer’s disease: a mathematical model. Eur J Appl Math. 2021;32(5):749–768. doi:10.1017/S0956792520000339
  • Tolar M, Abushakra S, Sabbagh M. The path forward in Alzheimer’s disease therapeutics: reevaluating the amyloid cascade hypothesis. Alzheimers Dement. 2019. doi:10.1016/j.jalz.2019.09.075
  • De La Torre J, Mecocci P. The vascular hypothesis of Alzheimer’s disease: a key to preclinical prediction of dementia using neuroimaging. J Alzheimer’s Dis. 2018;63(1):35–52. doi:10.3233/JAD-180004
  • Stakos DA, Stamatelopoulos K, Bampatsias D, et al. The Alzheimer’s disease amyloid-beta hypothesis in cardiovascular aging and disease: JACC focus seminar. J Am Coll Cardiol. 2020;75(8):952–967. doi:10.1016/j.jacc.2019.12.033
  • Woods C, Marques-Lopes J, Contoreggi NH, et al. Tumor necrosis factor α receptor type 1 activation in the hypothalamic paraventricular nucleus contributes to glutamate signaling and angiotensin II-dependent hypertension. J Neurosci. 2021;41(6):1349–1362. doi:10.1523/JNEUROSCI.2360-19.2020
  • Oscanoa TJ, Amado J, Vidal X, Romero-Ortuno R. Angiotensin-receptor blockers and the risk of Alzheimer s disease: a meta-analysis. Curr Rev. 2021;16(1):73–78.
  • Cosarderelioglu C, George CJ, Xue Q-L, et al. Angiotensin receptor blockers upregulate angiotensin type 4 receptor in brains of cognitively intact individuals. Innovat Aging. 2021;5(Supplement_1):634. doi:10.1093/geroni/igab046.2411
  • Giardini A, Piva T, Picchio FM, et al. Impact of transverse aortic arch hypoplasia after surgical repair of aortic coarctation: an exercise echo and magnetic resonance imaging study. Int J Cardiol. 2007;119(1):21–27. doi:10.1016/j.ijcard.2006.07.036
  • Tran S, Kuruppu S, Rajapakse NW. Chronic renin-angiotensin System Activation induced neuroinflammation: common mechanisms underlying hypertension and dementia? J Alzheimer’s Dis. 2022;85(3):943–955. doi:10.3233/JAD-215231
  • Zhang D, Wang YG, Liu CY, et al. Aminoguanidine ameliorates ovariectomy‑induced neuronal deficits in rats by inhibiting AGE‑mediated Aβ production. Acta Neurobiol Exp. 2021;81(1):10–20. doi:10.21307/ane-2021-002
  • Wang Y, Zhang R, Tao C, et al. Blood-brain barrier disruption and perivascular beta-amyloid accumulation in the brain of aged rats with spontaneous hypertension: evaluation with dynamic contrast-enhanced magnetic resonance imaging. Korean J Radiol. 2018;19(3):498–507. doi:10.3348/kjr.2018.19.3.498
  • Csiszar A, Tucsek Z, Toth P, et al. Synergistic effects of hypertension and aging on cognitive function and hippocampal expression of genes involved in β-amyloid generation and Alzheimer’s disease. Am J Physiol. 2013;305(8):H1120–H1130. doi:10.1152/ajpheart.00288.2013
  • van der Kant R, Goldstein LS, Ossenkoppele R. Amyloid-β-independent regulators of tau pathology in Alzheimer disease. Nat Rev Neurosci. 2020;21(1):21–35. doi:10.1038/s41583-019-0240-3
  • Hu H, Meng L, Bi Y-L, et al. Tau pathologies mediate the association of blood pressure with cognitive impairment in adults without dementia: the CABLE study. Alzheimers Dement. 2022;18(1):53–64. doi:10.1002/alz.12377
  • Laing KK, Simoes S, Baena-Caldas GP, et al. Cerebrovascular disease promotes tau pathology in Alzheimer’s disease. Brain commun. 2020;2(2):fcaa132. doi:10.1093/braincomms/fcaa132
  • Chiang GC, Mao X, Kang G, et al. Relationships among cortical glutathione levels, brain amyloidosis, and memory in healthy older adults investigated in vivo with 1 H-MRS and Pittsburgh compound-B PET. Am J Neuroradiol. 2017;38(6):1130–1137. doi:10.3174/ajnr.A5143
  • Raskin J, Cummings J, Hardy J, et al. Neurobiology of Alzheimer’s disease: integrated molecular, physiological, anatomical, biomarker, and cognitive dimensions. Curr Alzheimer Res. 2015;12(8):712–722. doi:10.2174/1567205012666150701103107
  • Schreiber S, Drukarch B, Garz C, et al. Interplay between age, cerebral small vessel disease, parenchymal amyloid-β, and tau pathology: longitudinal studies in hypertensive stroke-prone rats. J Alzheimer’s Dis. 2014;42(s3):S205–S215. doi:10.3233/JAD-132618
  • Kurata T, Lukic V, Kozuki M, et al. Telmisartan reduces progressive accumulation of cellular amyloid beta and phosphorylated tau with inflammatory responses in aged spontaneously hypertensive stroke resistant rat. J Stroke Cerebrovasc Dis. 2014;23(10):2580–2590. doi:10.1016/j.jstrokecerebrovasdis.2014.05.023
  • Castillo-Carranza DL, Nilson AN, Van Skike CE, et al. Cerebral microvascular accumulation of tau oligomers in Alzheimer’s disease and related tauopathies. Aging Dis. 2017;8(3):257. doi:10.14336/AD.2017.0112
  • Iadecola C, Gottesman RF. Cerebrovascular alterations in Alzheimer disease: incidental or pathogenic? Circ Res. 2018;123(4):406–408. doi:10.1161/CIRCRESAHA.118.313400
  • Watase H, Sun J, Hippe DS, et al. Carotid artery remodeling is segment specific: an in vivo study by vessel wall magnetic resonance imaging. Arterioscler Thromb Vasc Biol. 2018;38(4):927–934. doi:10.1161/ATVBAHA.117.310296
  • Kaess BM, Rong J, Larson MG, et al. Aortic stiffness, blood pressure progression, and incident hypertension. JAMA. 2012;308(9):875–881. doi:10.1001/2012.jama.10503
  • Jefferson AL, Cambronero FE, Liu D, et al. Higher aortic stiffness is related to lower cerebral blood flow and preserved cerebrovascular reactivity in older adults. Circulation. 2018;138(18):1951–1962. doi:10.1161/CIRCULATIONAHA.118.032410
  • DuBose LE, Boles Ponto LL, Moser DJ, et al. Higher aortic stiffness is associated with lower global cerebrovascular reserve among older humans. Hypertension. 2018;72(2):476–482. doi:10.1161/HYPERTENSIONAHA.118.11143
  • Schnerr RS, Jansen JFA, Uludag K, et al. Pulsatility of lenticulostriate arteries assessed by 7 Tesla flow MRI—Measurement, reproducibility, and applicability to aging effect. Front Physiol. 2017;8:961. doi:10.3389/fphys.2017.00961
  • Jackson R, Bellamy M. Antihypertensive drugs. Contin Educ Anaesth Crit Care Pain. 2015;15(6):280–285.
  • Brunström M, Carlberg B. Association of blood pressure lowering with mortality and cardiovascular disease across blood pressure levels: a systematic review and meta-analysis. JAMA Intern Med. 2018;178(1):28–36. doi:10.1001/jamainternmed.2017.6015
  • Iadecola C, Yaffe K, Biller J, et al. Impact of hypertension on cognitive function: a scientific statement from the American Heart Association. Hypertension. 2016;68(6):e67–e94. doi:10.1161/HYP.0000000000000053
  • Williamson JD, Pajewski NM, Auchus AP, et al. Effect of intensive vs standard blood pressure control on probable dementia: a randomized clinical trial. JAMA. 2019;321(6):553–561. doi:10.1001/jama.2018.21442
  • Hernandorena I, Duron E, Vidal J-S, et al. Treatment options and considerations for hypertensive patients to prevent dementia. Expert Opin Pharmacother. 2017;18(10):989–1000. doi:10.1080/14656566.2017.1333599
  • Li N-C, Lee A, Whitmer RA, et al. Use of angiotensin receptor blockers and risk of dementia in a predominantly male population: prospective cohort analysis. BMJ. 2010;340(1):b5465. doi:10.1136/bmj.b5465
  • Khachaturian AS, Zandi PP, Lyketsos CG, et al. Antihypertensive medication use and incident Alzheimer disease: the Cache County Study. Arch Neurol. 2006;63(5):686–692. doi:10.1001/archneur.63.5.noc60013
  • Vazirinejad R, Mirmotalebi M, Bageri M, et al. Age-related effect of antihypertensive treatment on cognitive performance: is it better preventing dementia in older age? Am J Alzheimer’s Dis Other Dement. 2019;34(7–8):486–491. doi:10.1177/1533317519859197
  • McGeer EG, McGeer PL. Clinically tested drugs for Alzheimer’s disease. Expert Opin Investig Drugs. 2003;12(7):1143–1151. doi:10.1517/13543784.12.7.1143
  • van Dalen JW, Moll van Charante EP, van Gool WA, et al. Discontinuation of antihypertensive medication, cognitive complaints, and incident dementia. J Am Med Dir Assoc. 2019;20(9):1091–1097. e3. doi:10.1016/j.jamda.2018.12.006
  • Desormais I, Amidou SA, Houehanou YC, et al. The prevalence, awareness, management and control of hypertension in men and women in Benin, West Africa: the TAHES study. BMC Cardiovasc Disord. 2019;19(1):1–12. doi:10.1186/s12872-019-01273-7
  • Gelaw S, Yenit MK, Nigatu SG, Moreira TMM. Self-care practice and associated factors among hypertensive patients in Debre Tabor Referral Hospital, Northwest Ethiopia, 2020. Int J Hypertens. 2021;2021:1–9. doi:10.1155/2021/3570050
  • Watts P, Rance S, McGowan V, et al. The long-term health and wellbeing impacts of Healthy New Towns (HNTs): protocol for a baseline and feasibility study of HNT demonstrator sites in England. Pilot Feasibil Stud. 2020;6(1):1–13. doi:10.1186/s40814-020-0550-2
  • Cifkova R, Fodor G, Wohlfahrt P. Changes in hypertension prevalence, awareness, treatment, and control in high-, middle-, and low-income countries: an update. Curr Hypertens Rep. 2016;18(8):1–6. doi:10.1007/s11906-016-0669-y
  • Souza FJ, Santos AG, de Morais KA, et al. Análise do Perfi l dos Praticantes de Mountain Bike (MTB) da Cidade de Trindade (GO). Vita et Sanitas. 2016;10(1):22–37.
  • Jorge C, Cetó M, Arias A, et al. level of understanding of Alzheimer disease among caregivers and the general population. Neurología. 2021;36(6):426–432. doi:10.1016/j.nrl.2018.03.004
  • Danta CC. Calcium channel blockers: a possible potential therapeutic strategy for the treatment of Alzheimer’s dementia patients with SARS-CoV-2 infection. ACS Chem Neurosci. 2020;11(15):2145–2148. doi:10.1021/acschemneuro.0c00391
  • Lebouvier T, Chen Y, Duriez P, et al. Antihypertensive agents in Alzheimer’s disease: beyond vascular protection. Expert Rev Neurother. 2020;20(2):175–187. doi:10.1080/14737175.2020.1708195
  • Schmukler E, Pinkas-Kramarski R. Autophagy induction in the treatment of Alzheimer’s disease. Drug Dev Res. 2020;81(2):184–193. doi:10.1002/ddr.21605
  • Gupta GL, Samant NP. Current druggable targets for therapeutic control of Alzheimer’s disease. Contemp Clin Trials. 2021;109:106549. doi:10.1016/j.cct.2021.106549
  • Ribeiro VT, de Souza LC, Simoes ESAC. Renin-angiotensin system and Alzheimer’s disease pathophysiology: from the potential interactions to therapeutic perspectives. Protein Pept Lett. 2020;27(6):484–511.
  • Chung MK, Karnik S, Saef J, et al. SARS-CoV-2 and ACE2: the biology and clinical data settling the ARB and ACEI controversy. EBioMedicine. 2020;58:102907. doi:10.1016/j.ebiom.2020.102907
  • Thomas J, Smith H, Smith CA, et al. The angiotensin-converting enzyme inhibitor lisinopril mitigates memory and motor deficits in a drosophila model of Alzheimer’s disease. Pathophysiology. 2021;28(2):307–319. doi:10.3390/pathophysiology28020020
  • Ballard C, Aarsland D, Cummings J, et al. Drug repositioning and repurposing for Alzheimer disease. Nat Rev Neurol. 2020;16(12):661–673. doi:10.1038/s41582-020-0397-4
  • Barthold D, Joyce G, Diaz Brinton R, et al. Association of combination statin and antihypertensive therapy with reduced Alzheimer’s disease and related dementia risk. PLoS One. 2020;15(3):e0229541. doi:10.1371/journal.pone.0229541
  • Royea J, Lacalle-Aurioles M, Trigiani LJ, et al. AT2R’s (Angiotensin II Type 2 Receptor’s) role in cognitive and cerebrovascular deficits in a mouse model of Alzheimer disease. Hypertension. 2020;75(6):1464–1474. doi:10.1161/HYPERTENSIONAHA.119.14431
  • Royea J, Hamel E. Brain angiotensin II and angiotensin IV receptors as potential Alzheimer’s disease therapeutic targets. Geroscience. 2020;42(5):1237–1256. doi:10.1007/s11357-020-00231-y
  • Evans AK, Ardestani PM, Yi B, et al. Beta-adrenergic receptor antagonism is proinflammatory and exacerbates neuroinflammation in a mouse model of Alzheimer’s disease. Neurobiol Dis. 2020;146:105089. doi:10.1016/j.nbd.2020.105089
  • Yiannopoulou KG, Papageorgiou SG. Current and future treatments in Alzheimer disease: an update. J Cent Nerv Syst Dis. 2020;12:1179573520907397. doi:10.1177/1179573520907397