168
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Sports Participation Promotes Beneficial Adaptations in the Erythrocyte Guanylate Nucleotide Pool in Male Athletes Aged 20–90 Years

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 987-997 | Received 08 Mar 2023, Accepted 25 May 2023, Published online: 22 Jun 2023

References

  • Giacomello A, Salerno C. Possible Metabolic Basis for GTP Depletion in Red Cells of Patients with PRPP Synthetase Superactivity. Adv Exp Med Biol. 1991;253–256. doi:10.1007/978-1-4615-7703-4_56
  • Simmonds HA, Fairbanks LD, Morris GS, Webster DR, Harley EH. Altered erythrocyte nucleotide patterns are characteristic of inherited disorders of purine or pyrimidine metabolism. Clin Chim Acta. 1988;171(2):197–210. doi:10.1016/0009-8981(88)90145-3
  • Carlucci F, Tabucchi A, Pagani R, Marinello E. Synthesis of adenine and guanine nucleotides at the ‘inosinic branch point’ in lymphocytes of leukemia patients. Biochim Biophys Acta - Mol Basis Dis. 1999;1454(1):106–114. doi:10.1016/s0925-4439(99)00032-0
  • Atkinson DE, Fall L. Adenosine triphosphate conservation in biosynthetic regulation. J Biol Chem. 1967;242(13):3241–3242. doi:10.1016/s0021-9258(18)95957-0
  • Berg JM, Tymoczko JL, Gatto GJ, Stryer L. Biochemistry. 8 ed. W. H. Freeman; 2015:1232.
  • Rupniak HTR, Quincey RV. Small changes in energy charge affect protein synthesis in reticulocyte lysates. FEBS Lett. 1975;58(1–2):99–101. doi:10.1016/0014-5793(75)80234-1
  • Wilden B, Savelsbergh A, Rodnina MV, Wintermeyer W. Role and timing of GTP binding and hydrolysis during EF-G-dependent tRNA translocation on the ribosome. Proc Natl Acad Sci U S A. 2006;103(37):13670–13675. doi:10.1073/pnas.0606099103
  • Li W, Liu Z, Koripella RK, Langlois R, Sanyal S, Frank J. Activation of GTP hydrolysis in mRNA-tRNA translocation by elongation factor G. Sci Adv. 2015;1(4):e1500169. doi:10.1126/sciadv.1500169
  • Voorhees RM, Schmeing TM, Kelley AC, Ramakrishnan V. The Mechanism for Activation of GTP Hydrolysis on the Ribosome. Science. 2010;330(6005):835–838. doi:10.1126/science.1194460
  • Rodnina MV, Peske F, Peng B-Z, Belardinelli R, Wintermeyer W. Converting GTP hydrolysis into motion: versatile translational elongation factor G. Biol Chem. 2019;401(1):131–142. doi:10.1515/hsz-2019-0313
  • Hesketh A, Oliver SG. High-energy guanine nucleotides as a signal capable of linking growth to cellular energy status via the control of gene transcription. Curr Genet. 2019;65(4):893–897. doi:10.1007/s00294-019-00963-1
  • Roostalu J, Thomas C, Cade NI, Kunzelmann S, Taylor IA, Surrey T. The speed of GTP hydrolysis determines GTP cap size and controls microtubule stability. eLife. 2020;9. doi:10.7554/elife.51992
  • Rodbell M, Schlegel W. The Role of GTP in the Coupling of Hormone Receptors and Adenylate Cyclase. In: Fuxe K, Hökfelt T, Luft R, editors. Central Regulation of the Endocrine System. New York: Plenum Press; 1979:71–83.
  • Takai Y, Sasaki T, Matozaki T. Small GTP-Binding Proteins. Physiol Rev. 2001;81(1):153–208. doi:10.1152/physrev.2001.81.1.153
  • Rodbell M. The role of hormone receptors and GTP-regulatory proteins in membrane transduction. Nature. 1980;284(5751):17–22. doi:10.1038/284017a0
  • Bergamini CM. GTP modulates calcium binding and cation-induced conformational changes in erythrocyte transglutaminase. FEBS Lett. 1988;239(2):255–258. doi:10.1016/0014-5793(88)80928-1
  • Naffouje R, Grover P, Yu H, et al. Anti-Tumor Potential of IMP Dehydrogenase Inhibitors: a Century-Long Story. Cancers. 2019;11:1346. doi:10.3390/cancers11091346
  • Hu M, Lin W. Effects of Exercise Training on Red Blood Cell Production: implications for Anemia. Acta Haematol. 2012;127(3):156–164. doi:10.1159/000335620
  • Ciekot-Sołtysiak M, Kusy K, Podgórski T, Zieliński J. Training-induced annual changes in red blood cell profile in highly-trained endurance and speed-power athletes. J Sports Med Phys Fitness. 2018;58(12):1859–1866. doi:10.23736/s0022-4707.17.07819-7
  • Mairbäurl H. Red blood cells in sports: effects of exercise and training on oxygen supply by red blood cells. Front in Physiol. 2013;4. doi:10.3389/fphys.2013.00332
  • Paraiso LF, Gonçalves-E-Oliveira AFM, Cunha LM, et al. Effects of acute and chronic exercise on the osmotic stability of erythrocyte membrane of competitive swimmers. PLoS One. 2017;12(2):e0171318. doi:10.1371/journal.pone.0171318
  • Lippi G, Sanchis-Gomar F. Epidemiological, biological and clinical update on exercise-induced hemolysis. Ann Transl Med. 2019;7(12):270. doi:10.21037/atm.2019.05.41
  • Mohanty JG, Nagababu E, Rifkind JM. Red blood cell oxidative stress impairs oxygen delivery and induces red blood cell aging. Front in Physiol. 2014;5:84. doi:10.3389/fphys.2014.00084
  • Massaccesi L, Galliera E, Corsi Romanelli MM. Erythrocytes as markers of oxidative stress related pathologies. Mech Ageing Dev. 2020;191:111333. doi:10.1016/j.mad.2020.111333
  • Şentürk ÜK, Gündüz F, Kuru O, et al. Exercise-induced oxidative stress leads hemolysis in sedentary but not trained humans. J Appl Physiol. 2005;99(4):1434–1441. doi:10.1152/japplphysiol.01392.2004
  • Borden M, Nyhan WL, Bakay B. Increased Activity of Adenine Phosphoribosyltransferase in Erythrocytes of Normal Newborn Infants. Pediatr Res. 1974;8(1):31–36. doi:10.1203/00006450-197401000-00006
  • Bizjak DA, Tomschi F, Bales G, et al. Does endurance training improve red blood cell aging and hemorheology in moderate-trained healthy individuals? J Sport Health Sci. 2020;9(6):595–603. doi:10.1016/j.jshs.2019.02.002
  • Dudzinska W, Suska M, Lubkowska A, et al. Comparison of human erythrocyte purine nucleotide metabolism and blood purine and pyrimidine degradation product concentrations before and after acute exercise in trained and sedentary subjects. J Physiol Sci. 2018;68(3):293–305. doi:10.1007/s12576-017-0536-x
  • Pospieszna B, Kusy K, Słomińska EM, Dudzinska W, Ciekot-Sołtysiak M, Zieliński J. The Effect of Training on Erythrocyte Energy Status and Plasma Purine Metabolites in Athletes. Metabolites. 2019;10(1):5. doi:10.3390/metabo10010005
  • Sawada Y, Ichikawa H, Ebine N, et al. Effects of High-Intensity Anaerobic Exercise on the Scavenging Activity of Various Reactive Oxygen Species and Free Radicals in Athletes. Nutrients. 2023;15(1):222. doi:10.3390/nu15010222
  • Pospieszna B, Kusy K, Slominska EM, Zieliński J. Life-long sports engagement enhances adult erythrocyte adenylate energetics. Sci Rep. 2021;11:23759. doi:10.1038/s41598-021-03275-y
  • Zieliński J, Slominska EM, Król-Zielińska M, Krasiński Z, Kusy K. Purine metabolism in sprint- vs endurance-trained athletes aged 20‒90 years. Sci Rep. 2019;9:12075. doi:10.1038/s41598-019-48633-z
  • Bull FC, Al-Ansari SS, Biddle S, et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br J Sports Med. 2020;54(24):1451–1462. doi:10.1136/bjsports-2020-102955
  • Edvardsen E, Hem E, Anderssen SA. End Criteria for Reaching Maximal Oxygen Uptake Must Be Strict and Adjusted to Sex and Age: a Cross-Sectional Study. PLoS One. 2014;9(1):e85276. doi:10.1371/journal.pone.0085276
  • Slominska EM, Carrey EA, Foks H, et al. A Novel Nucleotide Found in Human Erythrocytes, 4-Pyridone-3-carboxamide-1-β-d-ribonucleoside Triphosphate. J Biol Chem. 2006;281(43):32057–32064. doi:10.1074/jbc.m607514200
  • Wu R, Delahunt E, Ditroilo M, Lowery M, De Vito G. Effects of age and sex on neuromuscular-mechanical determinants of muscle strength. AGE. 2016;38:57. doi:10.1007/s11357-016-9921-2
  • Kusy K, Zieliński J. Aerobic capacity in speed-power athletes aged 20-90 years vs endurance runners and untrained participants. Scand J Med Sci Sports. 2014;24(1):68–79. doi:10.1111/j.1600-0838.2012.01496.x
  • Kosenko EA, Tikhonova LA, Montoliu C, Barreto GE, Aliev G, Kaminsky YG. Metabolic Abnormalities of Erythrocytes as a Risk Factor for Alzheimer’s Disease. Front Neurosci. 2018;11:728. doi:10.3389/fnins.2017.00728
  • Calabria E, Mazza EMC, Dyar KA, et al. Aging: a portrait from gene expression profile in blood cells. Aging. 2016;8(8):1802–1821. doi:10.18632/aging.101016
  • Khecuriani R, Lomsadze G, Arabuli M, Sanikidze T. Deformability of red blood cells and human aging. Georgian Med News. 2010;182:42–46.
  • Chaleckis R, Murakami I, Takada J, Kondoh H, Yanagida M. Individual variability in human blood metabolites identifies age-related differences. Proc Natl Acad Sci. 2016;113(16):4252–4259. doi:10.1073/pnas.1603023113
  • Kosenko EA, Tikhonova LA, Pogosyan AS, Kaminsky YG. Erythrocyte antioxidants in aging and dementia. Biomed Chem. 2012;6(3):273–277. doi:10.1134/s1990750812030079
  • Huang Y-X, Z-J W, Mehrishi J, et al. Human red blood cell aging: correlative changes in surface charge and cell properties. J Cell Mol Med. 2011;15(12):2634–2642. doi:10.1111/j.1582-4934.2011.01310.x
  • Domingo-Ortí I, Lamas-Domingo R, Ciudin A, et al. Metabolic footprint of aging and obesity in red blood cells. Aging. 2021;13(4):4850–4880. doi:10.18632/aging.202693
  • Andriollo-Sanchez M, Hininger-Favier I, Meunier N, et al. Age-related oxidative stress and antioxidant parameters in middle-aged and older European subjects: the ZENITH study. Eur J Clin Nutr. 2005;59(S2):S58–S62. doi:10.1038/sj.ejcn.1602300
  • Tavazzi B, Di Pierro D, Amorini AM, et al. Energy metabolism and lipid peroxidation of human erythrocytes as a function of increased oxidative stress. Eur J Biochem. 2000;267(3):684–689. doi:10.1046/j.1432-1327.2000.01042.x
  • Schranner D, Schönfelder M, Römisch‐Margl W, et al. Physiological extremes of the human blood metabolome: a metabolomics analysis of highly glycolytic, oxidative, and anabolic athletes. Physiol Rep. 2021;9(12):e14885. doi:10.14814/phy2.14885
  • Zarębska EA, Kusy K, Słomińska EM, Kruszyna Ł, Zieliński J. Plasma Nucleotide Dynamics during Exercise and Recovery in Highly Trained Athletes and Recreationally Active Individuals. BioMed Res Int. 2018;2018:4081802. doi:10.1155/2018/4081802
  • Zarębska EA, Kusy K, Słomińska EM, Kruszyna Ł, Zieliński J. Alterations in Exercise-Induced Plasma Adenosine Triphosphate Concentration in Highly Trained Athletes in a One-Year Training Cycle. Metabolites. 2019;9(10):230. doi:10.3390/metabo9100230
  • Zieliński J, Kusy K. Training-induced adaptation in purine metabolism in high-level sprinters vs. triathletes. J Appl Physiol. 2012;112(4):542–551. doi:10.1152/japplphysiol.01292.2011
  • Zieliński J, Krasińska B, Kusy K. Hypoxanthine as a Predictor of Performance in Highly Trained Athletes. Int J Sports Med. 2013;34(12):1079–1086. doi:10.1055/s-0033-1337947
  • Hoxhaj G, Hughes-Hallett J, Timson RC, et al. The mTORC1 Signaling Network Senses Changes in Cellular Purine Nucleotide Levels. Cell Rep. 2017;21(5):1331–1346. doi:10.1016/j.celrep.2017.10.029
  • Drey M, Sieber CC, Degens H, et al. Relation between muscle mass, motor units and type of training in master athletes. Clin Physiol Funct Imaging. 2016;36(1):70–76. doi:10.1111/cpf.12195
  • Kusy K, Zielinski J. Sprinters versus Long-distance Runners: how to Grow Old Healthy. ESSR. 2015;43(1):57–64. doi:10.1249/JES.0000000000000033