241
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Neuro-Navigated rTMS Improves Sleep and Cognitive Impairment via Regulating Sleep-Related Networks’ Spontaneous Activity in AD Spectrum Patients

, , ORCID Icon, , , , & show all
Pages 1333-1349 | Received 13 Apr 2023, Accepted 03 Aug 2023, Published online: 15 Aug 2023

References

  • Joe E, Ringman JM. Cognitive symptoms of Alzheimer’s disease: clinical management and prevention. BMJ. 2019;367:l6217. doi:10.1136/bmj.l6217
  • Irwin MR, Vitiello MV. Implications of sleep disturbance and inflammation for Alzheimer’s disease dementia. Lancet Neurol. 2019;18(3):296–306. doi:10.1016/S1474-4422(18)30450-2
  • Lauriola M, Esposito R, Delli Pizzi S, et al. Sleep changes without medial temporal lobe or brain cortical changes in community-dwelling individuals with subjective cognitive decline. Alzheimers Dement. 2017;13(7):783–791. doi:10.1016/j.jalz.2016.11.006
  • da Silva RAPC. Sleep disturbances and mild cognitive impairment: a review. Sleep Sci. 2015;8(1):36–41. doi:10.1016/j.slsci.2015.02.001
  • Hita-Yañez E, Atienza M, Cantero JL. Polysomnographic and subjective sleep markers of mild cognitive impairment. Sleep. 2013;36(9):1327–1334. doi:10.5665/sleep.2956
  • Bliwise DL. Sleep in normal aging and dementia. Sleep. 1993;16(1):40–81. doi:10.1093/sleep/16.1.40
  • Yaffe K, Falvey CM, Hoang T. Connections between sleep and cognition in older adults. Lancet Neurol. 2014;13(10):1017–1028. doi:10.1016/S1474-4422(14)70172-3
  • Sadeghmousavi S, Eskian M, Rahmani F, Rezaei N. The effect of insomnia on development of Alzheimer’s disease. J Neuroinflammation. 2020;17(1):289. doi:10.1186/s12974-020-01960-9
  • Scheltens P, De Strooper B, Kivipelto M, et al. Alzheimer’s disease. Lancet. 2021;397(10284):1577–1590. doi:10.1016/S0140-6736(20)32205-4
  • Lin Y, Jin J, Lv R, et al. Repetitive transcranial magnetic stimulation increases the brain’s drainage efficiency in a mouse model of Alzheimer’s disease. Acta Neuropathologica Commun. 2021;9(1):102 doi:10.1186/s40478-021-01198-3.
  • Klomjai W, Katz R, Lackmy-Vallee A. Basic principles of transcranial magnetic stimulation (TMS) and repetitive TMS (rTMS). Ann Phys Rehabil Med. 2015;58(4):208–213. doi:10.1016/j.rehab.2015.05.005
  • Iglesias AH. Transcranial Magnetic Stimulation as Treatment in Multiple Neurologic Conditions. Curr Neurol Neurosci Rep. 2020;20(1):1. doi:10.1007/s11910-020-1021-0
  • Yang Z, Sheng X, Qin R, et al. Cognitive Improvement via Left Angular Gyrus-Navigated Repetitive Transcranial Magnetic Stimulation Inducing the Neuroplasticity of Thalamic System in Amnesic Mild Cognitive Impairment Patients. J Alzheimer’s Dis. 2022;86(2):537–551. doi:10.3233/JAD-215390
  • Martinez-Cancino DP, Azpiroz-Leehan J, Jimenez-Angeles L, Garcia-Quintanar A, Santana-Miranda R Effects of high frequency rTMS on sleep deprivation: a pilot study. Annual International Conference of the IEEE Engineering In Medicine and Biology Society. IEEE Engineering In Medicine and Biology Society. Annual International Conference. 2016;2016:5937–5940.
  • Guo Z, Jiang Z, Jiang B, McClure MA, Mu Q. High-Frequency Repetitive Transcranial Magnetic Stimulation Could Improve Impaired Working Memory Induced by Sleep Deprivation. Neural Plast. 2019;2019:7030286. doi:10.1155/2019/7030286
  • Tahmasian M, Noori K, Samea F, et al. A lack of consistent brain alterations in insomnia disorder: an activation likelihood estimation meta-analysis. Sleep Med Rev. 2018;42:111–118. doi:10.1016/j.smrv.2018.07.004
  • Fasiello E, Gorgoni M, Scarpelli S, Alfonsi V, Ferini Strambi L, De Gennaro L. Functional connectivity changes in insomnia disorder: a systematic review. Sleep Med Rev. 2022;61:101569. doi:10.1016/j.smrv.2021.101569
  • Fernández-Mendoza J, Vela-Bueno A, Vgontzas AN, et al. Cognitive-emotional hyperarousal as a premorbid characteristic of individuals vulnerable to insomnia. Psychosom Med. 2010;72(4):397–403. doi:10.1097/PSY.0b013e3181d75319
  • Chen JE, Glover GH. Functional Magnetic Resonance Imaging Methods. Neuropsychol Rev. 2015;25(3):289–313. doi:10.1007/s11065-015-9294-9
  • Fransson P. Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. Hum Brain Mapp. 2005;26(1):15–29. doi:10.1002/hbm.20113
  • Jack CR, Albert MS, Knopman DS, et al. Introduction to the recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dementia. 2011;7(3):257–262. doi:10.1016/j.jalz.2011.03.004
  • Jessen F, Amariglio RE, van Boxtel M, et al. A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer’s disease. Alzheimers Dement. 2014;10(6):844–852. doi:10.1016/j.jalz.2014.01.001
  • McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dementia. 2011;7(3):263–269. doi:10.1016/j.jalz.2011.03.005
  • Albert MS, DeKosky ST, Dickson D, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):270–279. doi:10.1016/j.jalz.2011.03.008
  • Seow LSE, Verma SK, Mok YM, et al. Evaluating DSM-5 Insomnia Disorder and the Treatment of Sleep Problems in a Psychiatric Population. J Clin Sleep Med Feb. 2018;14(2):237–244. doi:10.5664/jcsm.6942
  • Katzman R, Zhang M, Wang Z, et al. A Chinese version of the Mini-Mental State Examination; impact of illiteracy in a Shanghai dementia survey. J Clin Epidemiol. 1988;41(10):971–978. doi:10.1016/0895-4356(88)90034-0
  • Lu J, Li D, Li F, et al. Montreal cognitive assessment in detecting cognitive impairment in Chinese elderly individuals: a population-based study. J Geriatr Psychiatry Neurol. 2011;24(4):184–190. doi:10.1177/0891988711422528
  • Zhao Q, Guo Q, Liang X, et al. Auditory verbal learning test is superior to Rey-Osterrieth complex figure memory for predicting mild cognitive impairment to Alzheimer’s disease. Curr Alzheimer Res. 2015;12(6):520–526. doi:10.2174/1567205012666150530202729
  • Osborne J, Costello A, Kellow J. Best Practices in Exploratory Factor Analysis. Louisville, KY: CreateSpace Independent Publishing Platform; 2014:86–99.
  • Wang T, Yan J, Li S, et al. Increased insular connectivity with emotional regions in primary insomnia patients: a resting-state fMRI study. Eur Radiol. 2017;27(9):3703–3709. doi:10.1007/s00330-016-4680-0
  • Bai Y, Tan J, Liu X, Cui X, Li D, Yin H. Resting-state functional connectivity of the sensory/somatomotor network associated with sleep quality: evidence from 202 young male samples. Brain Imaging Behav. 2022;16(4):1832–1841. doi:10.1007/s11682-022-00654-5
  • Fogel S, Ray L, Fang Z, Silverbrook M, Naci L, Owen AM. While you were sleeping: evidence for high-level executive processing of an auditory narrative during sleep. Conscious Cogn. 2022;100:103306. doi:10.1016/j.concog.2022.103306
  • Nie X, Shao Y, Liu SY, et al. Functional connectivity of paired default mode network subregions in primary insomnia. Neuropsychiatr Dis Treat. 2015;11:3085–3093. doi:10.2147/NDT.S95224
  • Zou G, Li Y, Liu J, et al. Altered thalamic connectivity in insomnia disorder during wakefulness and sleep. Hum Brain Mapp. 2021;42(1):259–270. doi:10.1002/hbm.25221
  • Baglioni C, Spiegelhalder K, Regen W, et al. Insomnia disorder is associated with increased amygdala reactivity to insomnia-related stimuli. Sleep. 2014;37(12):1907–1917. doi:10.5665/sleep.4240
  • Guadagni V, Burles F, Ferrara M, Iaria G. Sleep quality and its association with the insular cortex in emotional empathy. Eur J Neurosci. 2018;48(6):2288–2300. doi:10.1111/ejn.14124
  • Fruhholz S, Schlegel K, Grandjean D. Amygdala structure and core dimensions of the affective personality. Brain Struct Funct. 2017;222(9):3915–3925. doi:10.1007/s00429-017-1444-9
  • Pannese A, Grandjean D, Fruhholz S. Amygdala and auditory cortex exhibit distinct sensitivity to relevant acoustic features of auditory emotions. Cortex. 2016;85:116–125. doi:10.1016/j.cortex.2016.10.013
  • Trost W, Frühholz S, Schön D, et al. Getting the beat: entrainment of brain activity by musical rhythm and pleasantness. NeuroImage. 2014;103:55–64. doi:10.1016/j.neuroimage.2014.09.009
  • Trost W, Frühholz S, Cochrane T, Cojan Y, Vuilleumier P. Temporal dynamics of musical emotions examined through intersubject synchrony of brain activity. Soc Cogn Affect Neurosci. 2015;10(12):1705–1721. doi:10.1093/scan/nsv060
  • Yeo BT, Krienen FM, Sepulcre J, et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol. 2011;2:57 doi:10.1152/jn.00338.2011.
  • Londei A, D’Ausilio A, Basso D, et al. Sensory‐motor brain network connectivity for speech comprehension. Hum Brain Mapp. 2010;31(4):567–580. doi:10.1002/hbm.20888
  • Si X, Zhou W, Hong B. Cooperative cortical network for categorical processing of Chinese lexical tone. Proce National Acad Sci. 2017;114(46):12303–12308. doi:10.1073/pnas.1710752114
  • Behroozmand R, Shebek R, Hansen DR, et al. Sensory–motor networks involved in speech production and motor control: an fMRI study. Neuroimage. 2015;109:418–428. doi:10.1016/j.neuroimage.2015.01.040
  • Portas CM, Krakow K, Allen P, Josephs O, Armony JL, Frith CD. Auditory processing across the sleep-wake cycle: simultaneous EEG and fMRI monitoring in humans. Neuron. 2000;28(3):991–999. doi:10.1016/S0896-6273(00)00169-0
  • Bidelman GM, Brown JA, Bashivan P. Auditory cortex supports verbal working memory capacity. Neuroreport. 2021;32(2):163. doi:10.1097/WNR.0000000000001570
  • Pannese A, Grandjean D, Frühholz S. Subcortical processing in auditory communication. Hear Res. 2015;328:67–77. doi:10.1016/j.heares.2015.07.003
  • Schiel JE, Holub F, Petri R, et al. Affect and Arousal in Insomnia: through a Lens of Neuroimaging Studies. Curr Psychiatry Rep. 2020;22(9):44. doi:10.1007/s11920-020-01173-0
  • Liu Y-S, Wang Y-M, Zha D-J. Brain Functional and Structural Changes in Alzheimer’s Disease With Sleep Disorders: a Systematic Review. Front Psychiatry. 2021;12 doi:10.3389/fpsyt.2021.772068.
  • Li K, Luo X, Zeng Q, et al. Interactions between sleep disturbances and Alzheimer’s disease on brain function: a preliminary study combining the static and dynamic functional MRI. Sci Rep. 2019;9(1):19064. doi:10.1038/s41598-019-55452-9
  • Xu J, Dong H, Li N, et al. Weighted RSA: an Improved Framework on the Perception of Audio-visual Affective Speech in Left Insula and Superior Temporal Gyrus. Neuroscience. 2021;469:46–58. doi:10.1016/j.neuroscience.2021.06.002
  • Dyck M, Loughead J, Kellermann T, Boers F, Gur RC, Mathiak K. Cognitive versus automatic mechanisms of mood induction differentially activate left and right amygdala. NeuroImage. 2011;54(3):2503–2513. doi:10.1016/j.neuroimage.2010.10.013
  • Herrero Babiloni A, Bellemare A, Beetz G, et al. The effects of non-invasive brain stimulation on sleep disturbances among different neurological and neuropsychiatric conditions: a systematic review. Sleep Med Rev. 2021;55:101381. doi:10.1016/j.smrv.2020.101381
  • Lin Y, Jiang W-J, Shan P-Y, et al. The role of repetitive transcranial magnetic stimulation (rTMS) in the treatment of cognitive impairment in patients with Alzheimer’s disease: a systematic review and meta-analysis. J Neurol Sci. 2019;398:184–191. doi:10.1016/j.jns.2019.01.038
  • Wang JX, Rogers LM, Gross EZ, et al. Targeted enhancement of cortical-hippocampal brain networks and associative memory. Science. 2014;345(6200):1054–1057. doi:10.1126/science.1252900
  • Marshall L, Born J. The contribution of sleep to hippocampus-dependent memory consolidation. Trends Cogn Sci. 2007;11(10):442–450. doi:10.1016/j.tics.2007.09.001
  • Cavanna AE, Trimble MR. The precuneus: a review of its functional anatomy and behavioural correlates. Brain. 2006;129(Pt 3):564–583. doi:10.1093/brain/awl004
  • Zhang L, Huang Y, Zhang Y, Xin W, Shao Y, Yang Y. Enhanced high-frequency precuneus-cortical effective connectivity is associated with decreased sensory gating following total sleep deprivation. Neuroimage. 2019;197:255–263. doi:10.1016/j.neuroimage.2019.04.057
  • Paller KA. Cross-cortical consolidation as the core defect in amnesia: prospects for hypothesis-testing with neuropsychology and neuroimaging. Neuropsychol Memory. 2002;3:73–87.
  • Staresina BP, Bergmann TO, Bonnefond M, et al. Hierarchical nesting of slow oscillations, spindles and ripples in the human hippocampus during sleep. Nat Neurosci. 2015;18(11):1679–1686. doi:10.1038/nn.4119
  • Gong L, Xu R, Qin M, et al. New potential stimulation targets for noninvasive brain stimulation treatment of chronic insomnia. Sleep Med. 2020;75:380–387. doi:10.1016/j.sleep.2020.08.021