389
Views
1
CrossRef citations to date
0
Altmetric
REVIEW

Vascular Aging: Assessment and Intervention

, , , , ORCID Icon, , , , & show all
Pages 1373-1395 | Received 29 May 2023, Accepted 06 Aug 2023, Published online: 17 Aug 2023

References

  • North BJ, Sinclair DA. The intersection between aging and cardiovascular disease. Circ Res. 2012;110(8):1097–1108. doi:10.1161/CIRCRESAHA.111.246876
  • Cortes-Canteli M, Iadecola C. Alzheimer’s disease and vascular aging: JACC focus seminar. J Am Coll Cardiol. 2020;75(8):942–951. doi:10.1016/j.jacc.2019.10.062
  • Ungvari Z, Kaley G, de Cabo R, Sonntag WE, Csiszar A. Mechanisms of vascular aging: new perspectives. J Gerontol a Biol Sci Med Sci. 2010;65(10):1028–1041. doi:10.1093/gerona/glq113
  • Zhang C, Tao J; Cardiovascular Group SoGCMA. Expert consensus on clinical assessment and intervention of vascular aging in China (2018). Aging Med. 2018;1(3):228–237. doi:10.1002/agm2.12049
  • Tian XL, Li Y. Endothelial cell senescence and age-related vascular diseases. J Genet Genomics. 2014;41(9):485–495. doi:10.1016/j.jgg.2014.08.001
  • Virmani R, Avolio AP, Mergner WJ, et al. Effect of aging on aortic morphology in populations with high and low prevalence of hypertension and atherosclerosis. Comparison between occidental and Chinese communities. Am J Pathol. 1991;139(5):1119–1129.
  • Cai Y, Song W, Li J, et al. The landscape of aging. Sci China Life Sci. 2022;65(12):2354–2454. doi:10.1007/s11427-022-2161-3
  • Pignoli P, Tremoli E, Poli A, Oreste P, Paoletti R. Intimal plus medial thickness of the arterial wall: a direct measurement with ultrasound imaging. Circulation. 1986;74(6):1399–1406. doi:10.1161/01.CIR.74.6.1399
  • O’Leary DH, Polak JF, Kronmal RA, et al. Distribution and correlates of sonographically detected carotid artery disease in the Cardiovascular Health Study. The CHS Collaborative Research Group. Stroke. 1992;23(12):1752–1760. doi:10.1161/01.STR.23.12.1752
  • Salonen R, Salonen JT. Progression of carotid atherosclerosis and its determinants: a population-based ultrasonography study. Atherosclerosis. 1990;81(1):33–40. doi:10.1016/0021-9150(90)90056-O
  • Homma S, Hirose N, Ishida H, Ishii T, Araki G. Carotid plaque and intima-media thickness assessed by b-mode ultrasonography in subjects ranging from young adults to centenarians. Stroke. 2001;32(4):830–835. doi:10.1161/01.STR.32.4.830
  • Nagai Y, Metter EJ, Earley CJ, et al. Increased carotid artery intimal-medial thickness in asymptomatic older subjects with exercise-induced myocardial ischemia. Circulation. 1998;98(15):1504–1509. doi:10.1161/01.CIR.98.15.1504
  • Ando F, Takekuma K, Niino N, Shimokata H. Ultrasonic evaluation of common carotid intima-media thickness (IMT)--influence of local plaque on the relationship between IMT and age. J Epidemiol. 2000;10(1 Suppl):S10–S17. doi:10.2188/jea.10.1sup_10
  • Koç AS, Sümbül HE. Age should be considered in cut-off values for increased carotid intima-media thickness. Turk Kardiyol Dern Ars. 2019;47(4):301–311. doi:10.5543/tkda.2018.94770
  • Juonala M, Kähönen M, Laitinen T, et al. Effect of age and sex on carotid intima-media thickness, elasticity and brachial endothelial function in healthy adults: the cardiovascular risk in Young Finns Study. Eur Heart J. 2008;29(9):1198–1206. doi:10.1093/eurheartj/ehm556
  • Stein JH, Douglas PS, Srinivasan SR, et al. Distribution and cross-sectional age-related increases of carotid artery intima-media thickness in young adults: the Bogalusa Heart Study. Stroke. 2004;35(12):2782–2787. doi:10.1161/01.STR.0000147719.27237.14
  • Dinenno FA, Jones PP, Seals DR, Tanaka H. Age-associated arterial wall thickening is related to elevations in sympathetic activity in healthy humans. Am J Physiol Heart Circ Physiol. 2000;278(4):H1205–H1210. doi:10.1152/ajpheart.2000.278.4.H1205
  • van den Munckhof I, Scholten R, Cable NT, Hopman MT, Green DJ, Thijssen DH. Impact of age and sex on carotid and peripheral arterial wall thickness in humans. Acta Physiol. 2012;206(4):220–228. doi:10.1111/j.1748-1716.2012.02457.x
  • Watanabe D, Gando Y, Murakami H, et al. Longitudinal trajectory of vascular age indices and cardiovascular risk factors: a repeated-measures analysis. Sci Rep. 2023;13(1):5401. doi:10.1038/s41598-023-32443-5
  • O’Rourke MF, Nichols WW. Aortic diameter, aortic stiffness, and wave reflection increase with age and isolated systolic hypertension. Hypertension. 2005;45(4):652–658. doi:10.1161/01.HYP.0000153793.84859.b8
  • O’Rourke MF. Arterial aging: pathophysiological principles. Vasc Med. 2007;12(4):329–341. doi:10.1177/1358863X07083392
  • Vriz O, Driussi C, Bettio M, Ferrara F, D’Andrea A, Bossone E. Aortic root dimensions and stiffness in healthy subjects. Am J Cardiol. 2013;112(8):1224–1229. doi:10.1016/j.amjcard.2013.05.068
  • Vasan RS, Larson MG, Benjamin EJ, Levy D. Echocardiographic reference values for aortic root size: the Framingham Heart Study. J Am Soc Echocardiogr. 1995;8(6):793–800. doi:10.1016/S0894-7317(05)80003-3
  • Roman MJ, Devereux RB, Kramer-Fox R, O’Loughlin J. Two-dimensional echocardiographic aortic root dimensions in normal children and adults. Am J Cardiol. 1989;64(8):507–512. doi:10.1016/0002-9149(89)90430-X
  • Daimon M, Watanabe H, Abe Y, et al. Normal values of echocardiographic parameters in relation to age in a healthy Japanese population: the JAMP study. Circ J. 2008;72(11):1859–1866. doi:10.1253/circj.CJ-08-0171
  • Wang X, Ren XS, An YQ, et al. A specific assessment of the normal anatomy of the aortic root in relation to age and gender. Int J Gen Med. 2021;14:2827–2837. doi:10.2147/IJGM.S312439
  • Devereux RB, de Simone G, Arnett DK, et al. Normal limits in relation to age, body size and gender of two-dimensional echocardiographic aortic root dimensions in persons ≥15 years of age. Am J Cardiol. 2012;110(8):1189–1194. doi:10.1016/j.amjcard.2012.05.063
  • Campens L, Demulier L, De Groote K, et al. Reference values for echocardiographic assessment of the diameter of the aortic root and ascending aorta spanning all age categories. Am J Cardiol. 2014;114(6):914–920. doi:10.1016/j.amjcard.2014.06.024
  • Bjarnegård N, Länne T. Arterial properties along the upper arm in humans: age-related effects and the consequence of anatomical location. J Appl Physiol. 2010;108(1):34–38. doi:10.1152/japplphysiol.00479.2009
  • Sandgren T, Sonesson B, Ahlgren AR, Länne T. Factors predicting the diameter of the popliteal artery in healthy humans. J Vasc Surg. 1998;28(2):284–289. doi:10.1016/S0741-5214(98)70164-8
  • Sandgren T, Sonesson B, Ahlgren R, Länne T. The diameter of the common femoral artery in healthy human: influence of sex, age, and body size. J Vasc Surg. 1999;29(3):503–510. doi:10.1016/S0741-5214(99)70279-X
  • Bia D, Zócalo Y, Farro I, et al. Integrated evaluation of age-related changes in structural and functional vascular parameters used to assess arterial aging, subclinical atherosclerosis, and cardiovascular risk in Uruguayan adults: cUiiDARTE project. Int J Hypertens. 2011;2011:587303. doi:10.4061/2011/587303
  • Astrand H, Rydén-Ahlgren A, Sandgren T, Länne T. Age-related increase in wall stress of the human abdominal aorta: an in vivo study. J Vasc Surg. 2005;42(5):926–931. doi:10.1016/j.jvs.2005.07.010
  • Egashira K, Inou T, Hirooka Y, et al. Effects of age on endothelium-dependent vasodilation of resistance coronary artery by acetylcholine in humans. Circulation. 1993;88(1):77–81. doi:10.1161/01.CIR.88.1.77
  • Taddei S, Virdis A, Ghiadoni L, et al. Age-related reduction of NO availability and oxidative stress in humans. Hypertension. 2001;38(2):274–279. doi:10.1161/01.HYP.38.2.274
  • James MA, Tullett J, Hemsley AG, Shore AC. Effects of aging and hypertension on the microcirculation. Hypertension. 2006;47(5):968–974. doi:10.1161/01.HYP.0000209939.05482.61
  • Soltis EE. Effect of age on blood pressure and membrane-dependent vascular responses in the rat. Circ Res. 1987;61(6):889–897. doi:10.1161/01.RES.61.6.889
  • Vanhoutte PM. Aging and vascular responsiveness. J Cardiovasc Pharmacol. 1988;12(8):S11–S19. doi:10.1097/00005344-198812081-00004
  • Ludmer PL, Selwyn AP, Shook TL, et al. Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. N Engl J Med. 1986;315(17):1046–1051. doi:10.1056/NEJM198610233151702
  • Egashira K, Inou T, Hirooka Y, et al. Impaired coronary blood flow response to acetylcholine in patients with coronary risk factors and proximal atherosclerotic lesions. J Clin Invest. 1993;91(1):29–37. doi:10.1172/JCI116183
  • Ishida S, Hamasaki S, Kamekou M, et al. Advancing age is associated with diminished vascular remodeling and impaired vasodilation in resistance coronary arteries. Coron Artery Dis. 2003;14(6):443–449. doi:10.1097/00019501-200309000-00005
  • Yasue H, Matsuyama K, Matsuyama K, Okumura K, Morikami Y, Ogawa H. Responses of angiographically normal human coronary arteries to intracoronary injection of acetylcholine by age and segment. Possible role of early coronary atherosclerosis. Circulation. 1990;81(2):482–490. doi:10.1161/01.CIR.81.2.482
  • Tew GA, Klonizakis M, Saxton JM. Effects of ageing and fitness on skin-microvessel vasodilator function in humans. Eur J Appl Physiol. 2010;109(2):173–181. doi:10.1007/s00421-009-1342-9
  • Anderson TJ, Uehata A, Gerhard MD, et al. Close relation of endothelial function in the human coronary and peripheral circulations. J Am Coll Cardiol. 1995;26(5):1235–1241. doi:10.1016/0735-1097(95)00327-4
  • Anderson EA, Mark AL. Flow-mediated and reflex changes in large peripheral artery tone in humans. Circulation. 1989;79(1):93–100. doi:10.1161/01.CIR.79.1.93
  • Cho JM, Park SK, Kwon OS, et al. Activating P2Y1 receptors improves function in arteries with repressed autophagy. Cardiovasc Res. 2023;119(1):252–267. doi:10.1093/cvr/cvac061
  • Tajima E, Sakuma M, Tokoi S, et al. The comparison of endothelial function between conduit artery and microvasculature in patients with coronary artery disease. Cardiol J. 2020;27(1):38–46. doi:10.5603/CJ.a2018.0077
  • Babcock MC, DuBose LE, Witten TL, et al. Assessment of macrovascular and microvascular function in aging males. J Appl Physiol. 2021;130(1):96–103. doi:10.1152/japplphysiol.00616.2020
  • Donato AJ, Eskurza I, Silver AE, et al. Direct evidence of endothelial oxidative stress with aging in humans: relation to impaired endothelium-dependent dilation and upregulation of nuclear factor-kappaB. Circ Res. 2007;100(11):1659–1666. doi:10.1161/01.RES.0000269183.13937.e8
  • Eskurza I, Kahn ZD, Seals DR. Xanthine oxidase does not contribute to impaired peripheral conduit artery endothelium-dependent dilatation with ageing. J Physiol. 2006;571(Pt 3):661–668. doi:10.1113/jphysiol.2005.102566
  • Aizawa K, Ramalli A, Sbragi S, et al. Arterial wall shear rate response to reactive hyperaemia is markedly different between young and older humans. J Physiol. 2019;597(16):4151–4163. doi:10.1113/JP278310
  • Skaug EA, Aspenes ST, Oldervoll L, et al. Age and gender differences of endothelial function in 4739 healthy adults: the HUNT3 Fitness Study. Eur J Prev Cardiol. 2013;20(4):531–540. doi:10.1177/2047487312444234
  • Celermajer DS, Sorensen KE, Spiegelhalter DJ, Georgakopoulos D, Robinson J, Deanfield JE. Aging is associated with endothelial dysfunction in healthy men years before the age-related decline in women. J Am Coll Cardiol. 1994;24(2):471–476. doi:10.1016/0735-1097(94)90305-0
  • McEniery CM, Hall IR, Qasem A, Wilkinson IB, Cockcroft JR, Cockcroft JR. Normal vascular aging: differential effects on wave reflection and aortic pulse wave velocity: the Anglo-Cardiff Collaborative Trial (ACCT). J Am Coll Cardiol. 2005;46(9):1753–1760. doi:10.1016/j.jacc.2005.07.037
  • Aguilar VM, Paul A, Lazarko D, Levitan I. Paradigms of endothelial stiffening in cardiovascular disease and vascular aging. Front Physiol. 2022;13:1081119. doi:10.3389/fphys.2022.1081119
  • Bulpitt CJ, Rajkumar C, Cameron JD. Vascular compliance as a measure of biological age. J Am Geriatr Soc. 1999;47(6):657–663. doi:10.1111/j.1532-5415.1999.tb01586.x
  • González-Clemente JM, Cano A, Albert L, et al. Arterial stiffness in type 1 diabetes: the case for the arterial wall itself as a target organ. J Clin Med. 2021;10(16):3616. doi:10.3390/jcm10163616
  • Heffernan KS, Stoner L, London AS, Augustine JA, Lefferts WK. Estimated pulse wave velocity as a measure of vascular aging. PLoS One. 2023;18(1):e0280896. doi:10.1371/journal.pone.0280896
  • Laurent S, Cockcroft J, Van Bortel L, et al. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J. 2006;27(21):2588–2605. doi:10.1093/eurheartj/ehl254
  • Lehmann ED, Hopkins KD, Gosling RG. Assessment of arterial distensibility by automatic pulse wave velocity measurement. Hypertension. 1996;27(5):1188–1191.
  • Cecelja M, Chowienczyk P. Dissociation of aortic pulse wave velocity with risk factors for cardiovascular disease other than hypertension: a systematic review. Hypertension. 2009;54(6):1328–1336. doi:10.1161/HYPERTENSIONAHA.109.137653
  • Vaitkevicius PV, Fleg JL, Engel JH, et al. Effects of age and aerobic capacity on arterial stiffness in healthy adults. Circulation. 1993;88(4 Pt 1):1456–1462. doi:10.1161/01.CIR.88.4.1456
  • Avolio AP, Deng FQ, Li WQ, et al. Effects of aging on arterial distensibility in populations with high and low prevalence of hypertension: comparison between urban and rural communities in China. Circulation. 1985;71(2):202–210. doi:10.1161/01.CIR.71.2.202
  • Mitchell GF, Parise H, Benjamin EJ, et al. Changes in arterial stiffness and wave reflection with advancing age in healthy men and women: the Framingham Heart Study. Hypertension. 2004;43(6):1239–1245. doi:10.1161/01.HYP.0000128420.01881.aa
  • AlGhatrif M, Strait JB, Morrell CH, et al. Longitudinal trajectories of arterial stiffness and the role of blood pressure: the Baltimore Longitudinal Study of Aging. Hypertension. 2013;62(5):934–941. doi:10.1161/HYPERTENSIONAHA.113.01445
  • Avolio AP, Kuznetsova T, Heyndrickx GR, Kerkhof PLM, Li JK. Arterial flow, pulse pressure and pulse wave velocity in men and women at various ages. Adv Exp Med Biol. 2018;1065:153–168.
  • Reference Values for Arterial Stiffness’ Collaboration. Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: ‘establishing normal and reference values’. Eur Heart J. 2010;31(19):2338–2350. doi:10.1093/eurheartj/ehq165
  • Kim OY, Paik JK, Lee JY, Lee SH, Lee JH. Follow-ups of metabolic, inflammatory and oxidative stress markers, and brachial-ankle pulse wave velocity in middle-aged subjects without metabolic syndrome. Clin Exp Hypertens. 2013;35(5):382–388. doi:10.3109/10641963.2012.739232
  • Ishida A, Fujisawa M, Del Saz EG, et al. Arterial stiffness, not systolic blood pressure, increases with age in native Papuan populations. Hypertens Res. 2018;41(7):539–546. doi:10.1038/s41440-018-0047-z
  • Sang Y, Wu X, Miao J, Cao M, Ruan L, Zhang C. Determinants of Brachial-Ankle pulse wave velocity and vascular aging in healthy older subjects. Med Sci Monit. 2020;26:e923112. doi:10.12659/MSM.923112
  • Nichols WW, Singh BM. Augmentation index as a measure of peripheral vascular disease state. Curr Opin Cardiol. 2002;17(5):543–551. doi:10.1097/00001573-200209000-00016
  • Yao Y, Hao L, Xu L, et al. Diastolic augmentation index improves radial augmentation index in assessing arterial stiffness. Sci Rep. 2017;7(1):5864. doi:10.1038/s41598-017-06094-2
  • Sakurai M, Yamakado T, Kurachi H, et al. The relationship between aortic augmentation index and pulse wave velocity: an invasive study. J Hypertens. 2007;25(2):391–397. doi:10.1097/HJH.0b013e3280115b7c
  • Filipovský J, Tichá M, Cífková R, Lánská V, Stastná V, Roucka P. Large artery stiffness and pulse wave reflection: results of a population-based study. Blood Press. 2005;14(1):45–52. doi:10.1080/08037050510008814
  • Hidvégi EV, Illyés M, Molnár FT, Cziráki A. Influence of body height on aortic systolic pressure augmentation and wave reflection in childhood. J Hum Hypertens. 2015;29(8):495–501. doi:10.1038/jhh.2014.118
  • Diaz A, Zócalo Y, Bia D, Cabrera Fischer E. Reference Intervals of central aortic blood pressure and augmentation index assessed with an oscillometric device in healthy children, adolescents, and young adults from Argentina. Int J Hypertens. 2018;2018:1469651. doi:10.1155/2018/1469651
  • Kelly R, Hayward C, Avolio A, O’Rourke M. Noninvasive determination of age-related changes in the human arterial pulse. Circulation. 1989;80(6):1652–1659. doi:10.1161/01.CIR.80.6.1652
  • Kiran VR, Nabeel PM, Shah MI, Sivaprakasam M, Joseph J. Gaussian-Mixture modelling of a-mode radiofrequency scans for the measurement of arterial wall thickness. Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference. IEEE; 2021.
  • Raj KV, Joseph J, Nabeel PM, Sivaprakasam M. Automated measurement of compression-decompression in arterial diameter and wall thickness by image-free ultrasound. Comput Methods Programs Biomed. 2020;194:105557. doi:10.1016/j.cmpb.2020.105557
  • Nabeel PM, Manoj R, Abhidev VV, Joseph J, Kiran VR, Sivaprakasam M. High-throughput vascular screening by ARTSENS pen during a medical camp for early-stage detection of chronic kidney disease. 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society. IEEE; 2020.
  • Nabeel PM, Raj KV, Joseph J. Image-free ultrasound for local and regional vascular stiffness assessment: the ARTSENS Plus. J Hypertens. 2022;40(8):1537–1544. doi:10.1097/HJH.0000000000003181
  • Joseph J, Nabeel PM, Rao SR, Venkatachalam R, Shah MI, Kaur P. Assessment of carotid arterial stiffness in community settings with ARTSENS(R). IEEE J Transl Eng Health Med. 2021;9:1900111. doi:10.1109/JTEHM.2020.3042386
  • Joseph J, Kiran R, Nabeel PM, et al. ARTSENS((R)) Pen-portable easy-to-use device for carotid stiffness measurement: technology validation and clinical-utility assessment. Biomed Phys Eng Express. 2020;6(2):025013. doi:10.1088/2057-1976/ab74ff
  • Parker BA, Ridout SJ, Proctor DN. Age and flow-mediated dilation: a comparison of dilatory responsiveness in the brachial and popliteal arteries. Am J Physiol Heart Circ Physiol. 2006;291(6):H3043–H3049. doi:10.1152/ajpheart.00190.2006
  • Thijssen DH, de Groot P, Kooijman M, Smits P, Hopman MT. Sympathetic nervous system contributes to the age-related impairment of flow-mediated dilation of the superficial femoral artery. Am J Physiol Heart Circ Physiol. 2006;291(6):H3122–H3129. doi:10.1152/ajpheart.00240.2006
  • Asahara T, Masuda H, Takahashi T, et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res. 1999;85(3):221–228. doi:10.1161/01.RES.85.3.221
  • Walter DH, Rittig K, Bahlmann FH, et al. Statin therapy accelerates reendothelialization: a novel effect involving mobilization and incorporation of bone marrow-derived endothelial progenitor cells. Circulation. 2002;105(25):3017–3024. doi:10.1161/01.CIR.0000018166.84319.55
  • Kawamoto A, Gwon HC, Iwaguro H, et al. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation. 2001;103(5):634–637. doi:10.1161/01.CIR.103.5.634
  • Griese DP, Ehsan A, Melo LG, et al. Isolation and transplantation of autologous circulating endothelial cells into denuded vessels and prosthetic grafts: implications for cell-based vascular therapy. Circulation. 2003;108(21):2710–2715. doi:10.1161/01.CIR.0000096490.16596.A6
  • Fujiyama S, Amano K, Uehira K, et al. Bone marrow monocyte lineage cells adhere on injured endothelium in a monocyte chemoattractant protein-1-dependent manner and accelerate reendothelialization as endothelial progenitor cells. Circ Res. 2003;93(10):980–989. doi:10.1161/01.RES.0000099245.08637.CE
  • Hill JM, Zalos G, Halcox JP, et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med. 2003;348(7):593–600. doi:10.1056/NEJMoa022287
  • Tao J, Wang Y, Yang Z, Tu C, Xu MG, Wang JM. Circulating endothelial progenitor cell deficiency contributes to impaired arterial elasticity in persons of advancing age. J Hum Hypertens. 2006;20(7):490–495. doi:10.1038/sj.jhh.1001996
  • Yang Z, Chen L, Su C, et al. Impaired endothelial progenitor cell activity is associated with reduced arterial elasticity in patients with essential hypertension. Clin Exp Hypertens. 2010;32(7):444–452. doi:10.3109/10641961003686435
  • Keymel S, Kalka C, Rassaf T, Yeghiazarians Y, Kelm M, Heiss C. Impaired endothelial progenitor cell function predicts age-dependent carotid intimal thickening. Basic Res Cardiol. 2008;103(6):582–586. doi:10.1007/s00395-008-0742-z
  • Buffa S, Borzì D, Chiarelli R, et al. Biomarkers for vascular ageing in aorta tissues and blood samples. Exp Gerontol. 2019;128:110741. doi:10.1016/j.exger.2019.110741
  • Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res. 1961;25:585–621. doi:10.1016/0014-4827(61)90192-6
  • Strazhesko I, Tkacheva O, Boytsov S, et al. Association of insulin resistance, arterial stiffness and telomere length in adults free of cardiovascular diseases. PLoS One. 2015;10(8):e0136676. doi:10.1371/journal.pone.0136676
  • Mehdizadeh M, Aguilar M, Thorin E, Ferbeyre G, Nattel S. The role of cellular senescence in cardiac disease: basic biology and clinical relevance. Nat Rev Cardiol. 2022;19(4):250–264. doi:10.1038/s41569-021-00624-2
  • Strazhesko ID, Tkacheva ON, Akasheva DU, et al. Growth hormone, insulin-like growth factor-1, insulin resistance, and leukocyte telomere length as determinants of arterial aging in subjects free of cardiovascular diseases. Front Genet. 2017;8:198. doi:10.3389/fgene.2017.00198
  • Fitzpatrick AL, Kronmal RA, Gardner JP, et al. Leukocyte telomere length and cardiovascular disease in the cardiovascular health study. Am J Epidemiol. 2007;165(1):14–21. doi:10.1093/aje/kwj346
  • Spigoni V, Aldigeri R, Picconi A, et al. Telomere length is independently associated with subclinical atherosclerosis in subjects with type 2 diabetes: a cross-sectional study. Acta Diabetol. 2016;53(4):661–667. doi:10.1007/s00592-016-0857-x
  • Benetos A, Gardner JP, Zureik M, et al. Short telomeres are associated with increased carotid atherosclerosis in hypertensive subjects. Hypertension. 2004;43(2):182–185. doi:10.1161/01.HYP.0000113081.42868.f4
  • Raymond AR, Norton GR, Woodiwiss AJ, Brooksbank RL. Impact of gender and menopausal status on relationships between biological aging, as indexed by telomere length, and aortic stiffness. Am J Hypertens. 2015;28(5):623–630. doi:10.1093/ajh/hpu212
  • Peng H, Zhu Y, Yeh F, et al. Impact of biological aging on arterial aging in American Indians: findings from the Strong Heart Family Study. Aging. 2016;8(8):1583–1592. doi:10.18632/aging.101013
  • Nakashima H, Ozono R, Suyama C, Sueda T, Kambe M, Oshima T. Telomere attrition in white blood cell correlating with cardiovascular damage. Hypertens Res. 2004;27(5):319–325. doi:10.1291/hypres.27.319
  • Bucala R, Cerami A. Advanced glycosylation: chemistry, biology, and implications for diabetes and aging. Adv Pharmacol. 1992;23:1–34.
  • Sims TJ, Rasmussen LM, Oxlund H, Bailey AJ. The role of glycation cross-links in diabetic vascular stiffening. Diabetologia. 1996;39(8):946–951. doi:10.1007/BF00403914
  • Basta G. Receptor for advanced glycation endproducts and atherosclerosis: from basic mechanisms to clinical implications. Atherosclerosis. 2008;196(1):9–21. doi:10.1016/j.atherosclerosis.2007.07.025
  • Yonekura H, Yamamoto Y, Sakurai S, et al. Novel splice variants of the receptor for advanced glycation end-products expressed in human vascular endothelial cells and pericytes, and their putative roles in diabetes-induced vascular injury. Biochem J. 2003;370(Pt 3):1097–1109. doi:10.1042/bj20021371
  • Prasad K. Is there any evidence that AGE/sRAGE is a universal biomarker/risk marker for diseases? Mol Cell Biochem. 2019;451(1–2):139–144. doi:10.1007/s11010-018-3400-2
  • Geroldi D, Falcone C, Emanuele E, et al. Decreased plasma levels of soluble receptor for advanced glycation end-products in patients with essential hypertension. J Hypertens. 2005;23(9):1725–1729. doi:10.1097/01.hjh.0000177535.45785.64
  • Schram MT, Schalkwijk CG, Bootsma AH, Fuller JH, Chaturvedi N, Stehouwer CD. Advanced glycation end products are associated with pulse pressure in type 1 diabetes: the EURODIAB Prospective Complications Study. Hypertension. 2005;46(1):232–237. doi:10.1161/01.HYP.0000164574.60279.ba
  • McNulty M, Mahmud A, Feely J. Advanced glycation end-products and arterial stiffness in hypertension. Am J Hypertens. 2007;20(3):242–247. doi:10.1016/j.amjhyper.2006.08.009
  • Semba RD, Najjar SS, Sun K, Lakatta EG, Ferrucci L. Serum carboxymethyl-lysine, an advanced glycation end product, is associated with increased aortic pulse wave velocity in adults. Am J Hypertens. 2009;22(1):74–79. doi:10.1038/ajh.2008.320
  • Gelžinský J, Mayer O Jr, Seidlerová J, et al. Soluble receptor for advanced glycation end-products independently influences individual age-dependent increase of arterial stiffness. Hypertens Res. 2020;43(2):111–120. doi:10.1038/s41440-019-0347-y
  • Mayer O, Gelžinský J, Seidlerová J, et al. The role of advanced glycation end products in vascular aging: which parameter is the most suitable as a biomarker? J Hum Hypertens. 2021;35(3):240–249. doi:10.1038/s41371-020-0327-3
  • Gelžinský J, Mayer O Jr, Seidlerová J, et al. Serum biomarkers, skin autofluorescence and other methods. Which parameter better illustrates the relationship between advanced glycation end products and arterial stiffness in the general population? Hypertens Res. 2021;44(5):518–527. doi:10.1038/s41440-020-00601-1
  • Birukov A, Cuadrat R, Polemiti E, Eichelmann F, Schulze MB. Advanced glycation end-products, measured as skin autofluorescence, associate with vascular stiffness in diabetic, pre-diabetic and normoglycemic individuals: a cross-sectional study. Cardiovasc Diabetol. 2021;20(1):110. doi:10.1186/s12933-021-01296-5
  • Du Clos TW. Function of C-reactive protein. Ann Med. 2000;32(4):274–278. doi:10.3109/07853890009011772
  • Vlachopoulos C, Dima I, Aznaouridis K, et al. Acute systemic inflammation increases arterial stiffness and decreases wave reflections in healthy individuals. Circulation. 2005;112(14):2193–2200. doi:10.1161/CIRCULATIONAHA.105.535435
  • Fichtlscherer S, Rosenberger G, Walter DH, Breuer S, Dimmeler S, Zeiher AM. Elevated C-reactive protein levels and impaired endothelial vasoreactivity in patients with coronary artery disease. Circulation. 2000;102(9):1000–1006. doi:10.1161/01.CIR.102.9.1000
  • Mattace-Raso FU, van der Cammen TJ, van der Meer IM, et al. C-reactive protein and arterial stiffness in older adults: the Rotterdam Study. Atherosclerosis. 2004;176(1):111–116. doi:10.1016/j.atherosclerosis.2004.04.014
  • Yasmin MCM, Wallace S, Mackenzie IS, Cockcroft JR, Wilkinson IB, Wilkinson IB. C-reactive protein is associated with arterial stiffness in apparently healthy individuals. Arterioscler Thromb Vasc Biol. 2004;24(5):969–974. doi:10.1161/01.ATV.zhq0504.0173
  • Kampus P, Kals J, Ristimäe T, Fischer K, Zilmer M, Teesalu R. High-sensitivity C-reactive protein affects central haemodynamics and augmentation index in apparently healthy persons. J Hypertens. 2004;22(6):1133–1139. doi:10.1097/00004872-200406000-00014
  • Kullo IJ, Seward JB, Bailey KR, et al. C-reactive protein is related to arterial wave reflection and stiffness in asymptomatic subjects from the community. Am J Hypertens. 2005;18(8):1123–1129. doi:10.1016/j.amjhyper.2005.03.730
  • Nakhai-Pour HR, Grobbee DE, Bots ML, Muller M, van der Schouw YT. C-reactive protein and aortic stiffness and wave reflection in middle-aged and elderly men from the community. J Hum Hypertens. 2007;21(12):949–955. doi:10.1038/sj.jhh.1002255
  • Sun L, Ning C, Liu J, et al. The association between cumulative C-reactive protein and brachial-ankle pulse wave velocity. Aging Clin Exp Res. 2020;32(5):789–796. doi:10.1007/s40520-019-01274-8
  • McEniery CM, Spratt M, Munnery M, et al. An analysis of prospective risk factors for aortic stiffness in men: 20-year follow-up from the Caerphilly prospective study. Hypertension. 2010;56(1):36–43. doi:10.1161/HYPERTENSIONAHA.110.150896
  • Khutan H, Aggarwal S, Kajal KS, Garg R, Kaur R, Kaur A. Study of carotid intimal medial thickness in essential hypertension with or without left ventricular hypertrophy. Ann Afr Med. 2017;16(4):192–195. doi:10.4103/aam.aam_9_17
  • Diaz A, Tringler M, Wray S, Ramirez AJ, Cabrera Fischer EI. The effects of age on pulse wave velocity in untreated hypertension. J Clin Hypertens. 2018;20(2):258–265. doi:10.1111/jch.13167
  • Higashi Y, Sasaki S, Nakagawa K, Matsuura H, Kajiyama G, Oshima T. Effect of the angiotensin-converting enzyme inhibitor imidapril on reactive hyperemia in patients with essential hypertension: relationship between treatment periods and resistance artery endothelial function. J Am Coll Cardiol. 2001;37(3):863–870. doi:10.1016/S0735-1097(00)01177-3
  • Higashi Y, Sasaki S, Nakagawa K, et al. A comparison of angiotensin-converting enzyme inhibitors, calcium antagonists, beta-blockers and diuretic agents on reactive hyperemia in patients with essential hypertension: a multicenter study. J Am Coll Cardiol. 2000;35(2):284–291. doi:10.1016/S0735-1097(99)00561-6
  • Ding H, Liu S, Zhao KX, Pu J, Xie YF, Zhang XW. Comparative Efficacy of Antihypertensive Agents in Flow-Mediated Vasodilation of Patients with Hypertension: network Meta-Analysis of Randomized Controlled Trial. Int J Hypertens. 2022;2022:2432567. doi:10.1155/2022/2432567
  • Shahin Y, Khan JA, Samuel N, Chetter I. Angiotensin converting enzyme inhibitors effect on endothelial dysfunction: a meta-analysis of randomised controlled trials. Atherosclerosis. 2011;216(1):7–16. doi:10.1016/j.atherosclerosis.2011.02.044
  • Ong KT, Delerme S, Pannier B, et al. Aortic stiffness is reduced beyond blood pressure lowering by short-term and long-term antihypertensive treatment: a meta-analysis of individual data in 294 patients. J Hypertens. 2011;29(6):1034–1042. doi:10.1097/HJH.0b013e328346a583
  • Boutouyrie P, Lacolley P, Briet M, et al. Pharmacological modulation of arterial stiffness. Drugs. 2011;71(13):1689–1701. doi:10.2165/11593790-000000000-00000
  • Williams B, Lacy PS, Thom SM, et al. Differential impact of blood pressure-lowering drugs on central aortic pressure and clinical outcomes: principal results of the Conduit Artery Function Evaluation (CAFE) study. Circulation. 2006;113(9):1213–1225. doi:10.1161/CIRCULATIONAHA.105.595496
  • Wu CF, Liu PY, Wu TJ, Hung Y, Yang SP, Lin GM. Therapeutic modification of arterial stiffness: an update and comprehensive review. World J Cardiol. 2015;7(11):742–753. doi:10.4330/wjc.v7.i11.742
  • White WB, Duprez D, St Hillaire R, et al. Effects of the selective aldosterone blocker eplerenone versus the calcium antagonist amlodipine in systolic hypertension. Hypertension. 2003;41(5):1021–1026. doi:10.1161/01.HYP.0000067463.13172.EA
  • Chen X, Huang B, Liu M, Li X. Effects of different types of antihypertensive agents on arterial stiffness: a systematic review and meta-analysis of randomized controlled trials. J Thorac Dis. 2015;7(12):2339–2347. doi:10.3978/j.issn.2072-1439.2015.12.58
  • Li X, Chang P, Wang Q, et al. Effects of angiotensin-converting enzyme inhibitors on arterial stiffness: a systematic review and meta-analysis of randomized controlled trials. Cardiovasc Ther. 2020;2020:7056184. doi:10.1155/2020/7056184
  • Alem M, Milia P, Muir S, Lees K, Walters M. Comparison of the effects of diuretics on blood pressure and arterial stiffness in patients with stroke. J Stroke Cerebrovasc Dis. 2008;17(6):373–377. doi:10.1016/j.jstrokecerebrovasdis.2008.04.011
  • Kithas PA, Supiano MA. Spironolactone and hydrochlorothiazide decrease vascular stiffness and blood pressure in geriatric hypertension. J Am Geriatr Soc. 2010;58(7):1327–1332. doi:10.1111/j.1532-5415.2010.02905.x
  • Mahmud A, Feely J. Effect of angiotensin ii receptor blockade on arterial stiffness: beyond blood pressure reduction. Am J Hypertens. 2002;15(12):1092–1095. doi:10.1016/S0895-7061(02)02982-5
  • Boutouyrie P, Beaussier H, Achouba A, Laurent S. Destiffening effect of valsartan and atenolol: influence of heart rate and blood pressure. J Hypertens. 2014;32(1):108–114. doi:10.1097/HJH.0000000000000014
  • Wilkinson IB, MacCallum H, Flint L, Cockcroft JR, Newby DE, Webb DJ. The influence of heart rate on augmentation index and central arterial pressure in humans. J Physiol. 2000;525(Pt 1):263–270. doi:10.1111/j.1469-7793.2000.t01-1-00263.x
  • Mahmud A, Feely J. Beta-blockers reduce aortic stiffness in hypertension but nebivolol, not atenolol, reduces wave reflection. Am J Hypertens. 2008;21(6):663–667. doi:10.1038/ajh.2008.156
  • McEniery CM, Schmitt M, Qasem A, et al. Nebivolol increases arterial distensibility in vivo. Hypertension. 2004;44(3):305–310. doi:10.1161/01.HYP.0000137983.45556.6e
  • Koumaras C, Tziomalos K, Stavrinou E, et al. Effects of renin-angiotensin-aldosterone system inhibitors and beta-blockers on markers of arterial stiffness. Am Soc Hypertens. 2014;8(2):74–82. doi:10.1016/j.jash.2013.09.001
  • Theodorakopoulou M, Loutradis C, Bikos A, et al. The effects of nebivolol and irbesartan on ambulatory aortic blood pressure and arterial stiffness in hemodialysis patients with intradialytic hypertension. Blood Purif. 2021;50(1):73–83. doi:10.1159/000507913
  • Schram MT, Henry RM, van Dijk RA, et al. Increased central artery stiffness in impaired glucose metabolism and type 2 diabetes: the Hoorn Study. Hypertension. 2004;43(2):176–181. doi:10.1161/01.HYP.0000111829.46090.92
  • Brownlee M. Advanced protein glycosylation in diabetes and aging. Annu Rev Med. 1995;46:223–234. doi:10.1146/annurev.med.46.1.223
  • Wan Y, Liu Z, Wu A, et al. Hyperglycemia Promotes Endothelial Cell Senescence through AQR/PLAU Signaling Axis. Int J Mol Sci. 2022;23(5):2879. doi:10.3390/ijms23052879
  • Tian J, Wen Y, Yan L, et al. Vascular endothelial dysfunction in patients with newly diagnosed type 2 diabetes and effects of 2-year and 5-year multifactorial intervention. Echocardiography. 2011;28(10):1133–1140. doi:10.1111/j.1540-8175.2011.01514.x
  • Singh TP, Groehn H, Kazmers A. Vascular function and carotid intimal-medial thickness in children with insulin-dependent diabetes mellitus. J Am Coll Cardiol. 2003;41(4):661–665. doi:10.1016/S0735-1097(02)02894-2
  • Cameron JD, Bulpitt CJ, Pinto ES, Rajkumar C. The aging of elastic and muscular arteries: a comparison of diabetic and nondiabetic subjects. Diabetes Care. 2003;26(7):2133–2138. doi:10.2337/diacare.26.7.2133
  • de la Cruz-Ares S, Cardelo MP, Gutiérrez-Mariscal FM, et al. Endothelial dysfunction and advanced glycation end products in patients with newly diagnosed versus established diabetes: from the CORDIOPREV study. Nutrients. 2020;12(1):238. doi:10.3390/nu12010238
  • Dayem SM, Battah AA, El Bohy AE. Assessment of increase in aortic and carotid intimal medial thickness in type 1 diabetic patients. Open Access Maced J Med Sci. 2016;4(4):630–635. doi:10.3889/oamjms.2016.118
  • Abdelgawad IY, Agostinucci K, Sadaf B, Grant MKO, Zordoky BN. Metformin mitigates SASP secretion and LPS-triggered hyper-inflammation in Doxorubicin-induced senescent endothelial cells. Front Aging. 2023;4:1170434. doi:10.3389/fragi.2023.1170434
  • Timmons JG, Greenlaw N, Boyle JG, et al. Metformin and carotid intima-media thickness in never-smokers with type 1 diabetes: the REMOVAL trial. Diabet Obes Metab. 2021;23(6):1371–1378. doi:10.1111/dom.14350
  • Sardu C, Paolisso P, Sacra C, et al. Effects of metformin therapy on coronary endothelial dysfunction in patients with prediabetes with stable angina and nonobstructive coronary artery stenosis: the CODYCE multicenter prospective study. Diabet Care. 2019;42(10):1946–1955. doi:10.2337/dc18-2356
  • Lunder M, Janić M, Japelj M, Juretič A, Janež A, Šabovič M. Empagliflozin on top of metformin treatment improves arterial function in patients with type 1 diabetes mellitus. Cardiovasc Diabetol. 2018;17(1):153. doi:10.1186/s12933-018-0797-6
  • Agarwal N, Rice SP, Bolusani H, et al. Metformin reduces arterial stiffness and improves endothelial function in young women with polycystic ovary syndrome: a randomized, placebo-controlled, crossover trial. J Clin Endocrinol Metab. 2010;95(2):722–730. doi:10.1210/jc.2009-1985
  • Minamikawa J, Tanaka S, Yamauchi M, Inoue D, Koshiyama H. Potent inhibitory effect of troglitazone on carotid arterial wall thickness in type 2 diabetes. J Clin Endocrinol Metab. 1998;83(5):1818–1820. doi:10.1210/jcem.83.5.4932
  • Sidhu JS, Kaposzta Z, Markus HS, Kaski JC. Effect of rosiglitazone on common carotid intima-media thickness progression in coronary artery disease patients without diabetes mellitus. Arterioscler Thromb Vasc Biol. 2004;24(5):930–934. doi:10.1161/01.ATV.0000124890.40436.77
  • Hetzel J, Balletshofer B, Rittig K, et al. Rapid effects of rosiglitazone treatment on endothelial function and inflammatory biomarkers. Arterioscler Thromb Vasc Biol. 2005;25(9):1804–1809. doi:10.1161/01.ATV.0000176192.16951.9a
  • Satoh N, Ogawa Y, Usui T, et al. Antiatherogenic effect of pioglitazone in type 2 diabetic patients irrespective of the responsiveness to its antidiabetic effect. Diabet Care. 2003;26(9):2493–2499. doi:10.2337/diacare.26.9.2493
  • Liu L, Ni YQ, Zhan JK, Liu YS. The role of SGLT2 INHIBITORS IN VASCULAR AGING. Aging Dis. 2021;12(5):1323–1336. doi:10.14336/AD.2020.1229
  • Solini A, Giannini L, Seghieri M, et al. Dapagliflozin acutely improves endothelial dysfunction, reduces aortic stiffness and renal resistive index in type 2 diabetic patients: a pilot study. Cardiovasc Diabetol. 2017;16(1):138. doi:10.1186/s12933-017-0621-8
  • Solini A, Seghieri M, Giannini L, et al. The effects of dapagliflozin on systemic and renal vascular function display an epigenetic signature. J Clin Endocrinol Metab. 2019;104(10):4253–4263. doi:10.1210/jc.2019-00706
  • Koren S, Shemesh-Bar L, Tirosh A, et al. The effect of sitagliptin versus glibenclamide on arterial stiffness, blood pressure, lipids, and inflammation in type 2 diabetes mellitus patients. Diabet Technol Ther. 2012;14(7):561–567. doi:10.1089/dia.2011.0296
  • Cosenso-Martin LN, Giollo-Júnior LT, Fernandes LAB, et al. Effect of vildagliptin versus glibenclamide on endothelial function and arterial stiffness in patients with type 2 diabetes and hypertension: a randomized controlled trial. Acta Diabetol. 2018;55(12):1237–1245. doi:10.1007/s00592-018-1204-1
  • Nagayama D, Saiki A, Endo K, et al. Improvement of cardio-ankle vascular index by glimepiride in type 2 diabetic patients. Int J Clin Pract. 2010;64(13):1796–1801. doi:10.1111/j.1742-1241.2010.02399.x
  • Chen LL, Yu F, Zeng TS, Liao YF, Li YM, Ding HC. Effects of gliclazide on endothelial function in patients with newly diagnosed type 2 diabetes. Eur J Pharmacol. 2011;659(2–3):296–301. doi:10.1016/j.ejphar.2011.02.044
  • Fava D, Cassone-Faldetta M, Laurenti O, De Luca O, Ghiselli A, De Mattia G. Gliclazide improves anti-oxidant status and nitric oxide-mediated vasodilation in Type 2 diabetes. Diabet Med. 2002;19(9):752–757. doi:10.1046/j.1464-5491.2002.00762.x
  • Kraaijenhof J, Muskiet MHA, Tonneijck L, et al. Effects of dipeptidyl peptidase-4 inhibitor linagliptin versus sulphonylurea glimepiride on systemic haemodynamics in overweight patients with type 2 diabetes: a secondary analysis of an 8-week, randomized, controlled, double-blind trial. Diabetes Obes Metab. 2020;22(10):1847–1856. doi:10.1111/dom.14107
  • van Bommel EJM, Smits MM, Ruiter D, et al. Effects of dapagliflozin and gliclazide on the cardiorenal axis in people with type 2 diabetes. J Hypertens. 2020;38(9):1811–1819. doi:10.1097/HJH.0000000000002480
  • Tamura H, Kondo Y, Ito K, Hasebe M, Satoh S, Terauchi Y. Comparison of the effects of empagliflozin and glimepiride on endothelial function in patients with type 2 diabetes: a randomized controlled study. PLoS One. 2022;17(2):e0262831. doi:10.1371/journal.pone.0262831
  • Nomoto H, Miyoshi H, Furumoto T, et al. A comparison of the effects of the GLP-1 analogue liraglutide and insulin glargine on endothelial function and metabolic parameters: a randomized, controlled trial Sapporo Athero-Incretin Study 2 (SAIS2). PLoS One. 2015;10(8):e0135854. doi:10.1371/journal.pone.0135854
  • Gurkan E, Tarkun I, Sahin T, Cetinarslan B, Canturk Z. Evaluation of exenatide versus insulin glargine for the impact on endothelial functions and cardiovascular risk markers. Diabet Res Clin Pract. 2014;106(3):567–575. doi:10.1016/j.diabres.2014.09.046
  • Irace C, De Luca S, Shehaj E, et al. Exenatide improves endothelial function assessed by flow mediated dilation technique in subjects with type 2 diabetes: results from an observational research. Diab Vasc Dis Res. 2013;10(1):72–77. doi:10.1177/1479164112449562
  • Koska J, Sands M, Burciu C, et al. Exenatide protects against glucose- and lipid-induced endothelial dysfunction: evidence for direct vasodilation effect of GLP-1 receptor agonists in humans. Diabetes. 2015;64(7):2624–2635. doi:10.2337/db14-0976
  • Song X, Jia H, Jiang Y, et al. Anti-atherosclerotic effects of the glucagon-like peptide-1 (GLP-1) based therapies in patients with type 2 Diabetes Mellitus: a meta-analysis. Sci Rep. 2015;5:10202. doi:10.1038/srep10202
  • Scalzo RL, Moreau KL, Ozemek C, et al. Exenatide improves diastolic function and attenuates arterial stiffness but does not alter exercise capacity in individuals with type 2 diabetes. J Diabetes Complications. 2017;31(2):449–455. doi:10.1016/j.jdiacomp.2016.10.003
  • Hong JY, Park KY, Kim BJ, Hwang WM, Kim DH, Lim DM. Effects of short-term exenatide treatment on regional fat distribution, glycated hemoglobin levels, and aortic pulse wave velocity of obese type 2 diabetes mellitus patients. Endocrinol Metab. 2016;31(1):80–85. doi:10.3803/EnM.2016.31.1.80
  • Patti AM, Nikolic D, Magan-Fernandez A, et al. Exenatide once-weekly improves metabolic parameters, endothelial dysfunction and carotid intima-media thickness in patients with type-2 diabetes: an 8-month prospective study. Diabet Res Clin Pract. 2019;149:163–169. doi:10.1016/j.diabres.2019.02.006
  • Franklin VL, Khan F, Kennedy G, Belch JJ, Greene SA. Intensive insulin therapy improves endothelial function and microvascular reactivity in young people with type 1 diabetes. Diabetologia. 2008;51(2):353–360. doi:10.1007/s00125-007-0870-2
  • Vehkavaara S, Yki-Järvinen H. 3.5 years of insulin therapy with insulin glargine improves in vivo endothelial function in type 2 diabetes. Arterioscler Thromb Vasc Biol. 2004;24(2):325–330. doi:10.1161/01.ATV.0000113817.48983.c5
  • Makino H, Tanaka A, Hosoda H, et al. Effect of basal insulin therapy on vascular endothelial function and adipokine profiles in people with Type 2 diabetes. Diabet Med. 2016;33(12):1737–1743. doi:10.1111/dme.13151
  • Pirro M, Schillaci G, Paltriccia R, et al. Increased ratio of CD31+/CD42- microparticles to endothelial progenitors as a novel marker of atherosclerosis in hypercholesterolemia. Arterioscler Thromb Vasc Biol. 2006;26(11):2530–2535. doi:10.1161/01.ATV.0000243941.72375.15
  • Reiner Ž, Simental-Mendía LE, Ruscica M, et al. Pulse wave velocity as a measure of arterial stiffness in patients with familial hypercholesterolemia: a systematic review and meta-analysis. Arch Med Sci. 2019;15(6):1365–1374. doi:10.5114/aoms.2019.89450
  • Braamskamp M, Langslet G, McCrindle BW, et al. Effect of rosuvastatin on carotid intima-media thickness in children with heterozygous familial hypercholesterolemia: the CHARON Study (Hypercholesterolemia in children and adolescents taking rosuvastatin open label). Circulation. 2017;136(4):359–366. doi:10.1161/CIRCULATIONAHA.116.025158
  • Masoura C, Pitsavos C, Aznaouridis K, Skoumas I, Vlachopoulos C, Stefanadis C. Arterial endothelial function and wall thickness in familial hypercholesterolemia and familial combined hyperlipidemia and the effect of statins. A systematic review and meta-analysis. Atherosclerosis. 2011;214(1):129–138. doi:10.1016/j.atherosclerosis.2010.10.008
  • John S, Schneider MP, Delles C, Jacobi J, Schmieder RE. Lipid-independent effects of statins on endothelial function and bioavailability of nitric oxide in hypercholesterolemic patients. Am Heart J. 2005;149(3):473. doi:10.1016/j.ahj.2004.06.027
  • Smilde TJ, van Wissen S, Wollersheim H, Trip MD, Kastelein JJ, Stalenhoef AF. Effect of aggressive versus conventional lipid lowering on atherosclerosis progression in familial hypercholesterolaemia (ASAP): a prospective, randomised, double-blind trial. Lancet. 2001;357(9256):577–581. doi:10.1016/S0140-6736(00)04053-8
  • Smilde TJ, van den Berkmortel FW, Wollersheim H, van Langen H, Kastelein JJ, Stalenhoef AF. The effect of cholesterol lowering on carotid and femoral artery wall stiffness and thickness in patients with familial hypercholesterolaemia. Eur J Clin Invest. 2000;30(6):473–480. doi:10.1046/j.1365-2362.2000.00654.x
  • Garcia MM, Varela CG, Silva PF, et al. Endothelial effect of statin therapy at a high dose versus low dose associated with ezetimibe. Arq Bras Cardiol. 2016;106(4):279–288. doi:10.5935/abc.20160048
  • Takase S, Matoba T, Nakashiro S, et al. Ezetimibe in combination with statins ameliorates endothelial dysfunction in coronary arteries after stenting: the CuVIC Trial (Effect of cholesterol absorption inhibitor usage on target vessel dysfunction after coronary stenting), a multicenter randomized controlled trial. Arterioscler Thromb Vasc Biol. 2017;37(2):350–358. doi:10.1161/ATVBAHA.116.308388
  • Upala S, Wirunsawanya K, Jaruvongvanich V, Sanguankeo A. Effects of statin therapy on arterial stiffness: a systematic review and meta-analysis of randomized controlled trial. Int J Cardiol. 2017;227:338–341. doi:10.1016/j.ijcard.2016.11.073
  • Nechyporenko A, Tedla YG, Korcarz C, Tattersall MC, Greenland P, Gepner AD. Association of statin therapy with progression of carotid arterial stiffness: the Multi-Ethnic Study of Atherosclerosis (Mesa). Hypertens Res. 2023;46(3):679–687. doi:10.1038/s41440-022-01095-9
  • Castejon R, Castañeda A, Sollet A, et al. Short-term atorvastatin therapy improves arterial stiffness of middle-aged systemic lupus erythematosus patients with pathological pulse wave velocity. Lupus. 2017;26(4):355–364. doi:10.1177/0961203316662719
  • Cavero-Redondo I, Deeks JJ, Alvarez-Bueno C, et al. Comparative effect of physical exercise versus statins on improving arterial stiffness in patients with high cardiometabolic risk: a network meta-analysis. PLoS Med. 2021;18(2):e1003543. doi:10.1371/journal.pmed.1003543
  • Gepner AD, Lazar K, Hulle CV, Korcarz CE, Asthana S, Carlsson CM. Effects of simvastatin on augmentation index are transient: outcomes from a randomized controlled trial. J Am Heart Assoc. 2019;8(20):e009792. doi:10.1161/JAHA.118.009792
  • Jankowski J, Floege J, Fliser D, Böhm M, Marx N. Cardiovascular disease in chronic kidney disease: pathophysiological insights and therapeutic options. Circulation. 2021;143(11):1157–1172. doi:10.1161/CIRCULATIONAHA.120.050686
  • Fassett RG, Robertson IK, Ball MJ, Geraghty DP, Sharman JE, Coombes JS. Effects of atorvastatin on arterial stiffness in chronic kidney disease: a randomised controlled trial. J Atheroscler Thromb. 2010;17(3):235–241. doi:10.5551/jat.2683
  • Kontopoulos AG, Athyros VG, Pehlivanidis AN, Demitriadis DS, Papageorgiou AA, Boudoulas H. Long-term treatment effect of atorvastatin on aortic stiffness in hypercholesterolaemic patients. Curr Med Res Opin. 2003;19(1):22–27. doi:10.1185/030079902125001290
  • Gomez-Sanchez M, Gomez-Sanchez L, Patino-Alonso MC, et al. Vascular aging and its relationship with lifestyles and other risk factors in the general Spanish population: early Vascular Ageing Study. J Hypertens. 2020;38(6):1110–1122. doi:10.1097/HJH.0000000000002373
  • DeSouza CA, Shapiro LF, Clevenger CM, et al. Regular aerobic exercise prevents and restores age-related declines in endothelium-dependent vasodilation in healthy men. Circulation. 2000;102(12):1351–1357. doi:10.1161/01.CIR.102.12.1351
  • Higashi Y, Sasaki S, Kurisu S, et al. Regular aerobic exercise augments endothelium-dependent vascular relaxation in normotensive as well as hypertensive subjects: role of endothelium-derived nitric oxide. Circulation. 1999;100(11):1194–1202. doi:10.1161/01.CIR.100.11.1194
  • Golbidi S, Laher I. Exercise and the aging endothelium. J Diabetes Res. 2013;2013:789607. doi:10.1155/2013/789607
  • Higashi Y, Sasaki S, Sasaki N, et al. Daily aerobic exercise improves reactive hyperemia in patients with essential hypertension. Hypertension. 1999;33(1 Pt 2):591–597. doi:10.1161/01.HYP.33.1.591
  • Sugawara J, Tomoto T, Noda N, et al. Effects of endothelin-related gene polymorphisms and aerobic exercise habit on age-related arterial stiffening: a 10-yr longitudinal study. J Appl Physiol. 2018;124(2):312–320. doi:10.1152/japplphysiol.00697.2017
  • Tanaka H, Dinenno FA, Monahan KD, Clevenger CM, DeSouza CA, Seals DR. Aging, habitual exercise, and dynamic arterial compliance. Circulation. 2000;102(11):1270–1275. doi:10.1161/01.CIR.102.11.1270
  • Tanaka H, Seals DR, Monahan KD, Clevenger CM, DeSouza CA, Dinenno FA. Regular aerobic exercise and the age-related increase in carotid artery intima-media thickness in healthy men. J Appl Physiol. 2002;92(4):1458–1464. doi:10.1152/japplphysiol.00824.2001
  • Popovic M, Puchner S, Endler G, Foraschik C, Minar E, Bucek RA. The effects of endurance and recreational exercise on subclinical evidence of atherosclerosis in young adults. Am J Med Sci. 2010;339(4):332–336. doi:10.1097/MAJ.0b013e3181cefbb9
  • Moreau KL, Donato AJ, Seals DR, et al. Arterial intima-media thickness: site-specific associations with HRT and habitual exercise. Am J Physiol Heart Circ Physiol. 2002;283(4):H1409–H1417. doi:10.1152/ajpheart.00035.2002
  • Moreau KL, Silver AE, Dinenno FA, Seals DR. Habitual aerobic exercise is associated with smaller femoral artery intima-media thickness with age in healthy men and women. Eur J Cardiovasc Prev Rehabil. 2006;13(5):805–811. doi:10.1097/01.hjr.0000230103.55653.42
  • Dinenno FA, Tanaka H, Monahan KD, et al. Regular endurance exercise induces expansive arterial remodelling in the trained limbs of healthy men. J Physiol. 2001;534(Pt 1):287–295. doi:10.1111/j.1469-7793.2001.00287.x
  • Thijssen DH, Cable NT, Green DJ. Impact of exercise training on arterial wall thickness in humans. Clin Sci. 2012;122(7):311–322. doi:10.1042/CS20110469
  • Miyachi M, Donato AJ, Yamamoto K, et al. Greater age-related reductions in central arterial compliance in resistance-trained men. Hypertension. 2003;41(1):130–135. doi:10.1161/01.HYP.0000047649.62181.88
  • Jennings A, Berendsen AM, de Groot L, et al. Mediterranean-style diet improves systolic blood pressure and arterial stiffness in older adults. Hypertension. 2019;73(3):578–586. doi:10.1161/HYPERTENSIONAHA.118.12259
  • Plotnick GD, Corretti MC, Vogel RA. Effect of antioxidant vitamins on the transient impairment of endothelium-dependent brachial artery vasoactivity following a single high-fat meal. JAMA. 1997;278(20):1682–1686. doi:10.1001/jama.1997.03550200058032
  • Davis CR, Hodgson JM, Woodman R, Bryan J, Wilson C, Murphy KJ. A Mediterranean diet lowers blood pressure and improves endothelial function: results from the MedLey randomized intervention trial. Am J Clin Nutr. 2017;105(6):1305–1313. doi:10.3945/ajcn.116.146803
  • Rallidis LS, Lekakis J, Kolomvotsou A, et al. Close adherence to a Mediterranean diet improves endothelial function in subjects with abdominal obesity. Am J Clin Nutr. 2009;90(2):263–268. doi:10.3945/ajcn.2008.27290
  • Esposito K, Marfella R, Ciotola M, et al. Effect of a Mediterranean-style diet on endothelial dysfunction and markers of vascular inflammation in the metabolic syndrome: a randomized trial. JAMA. 2004;292(12):1440–1446. doi:10.1001/jama.292.12.1440
  • Khoo J, Piantadosi C, Duncan R, et al. Comparing effects of a low-energy diet and a high-protein low-fat diet on sexual and endothelial function, urinary tract symptoms, and inflammation in obese diabetic men. J Sex Med. 2011;8(10):2868–2875. doi:10.1111/j.1743-6109.2011.02417.x
  • Phillips SA, Jurva JW, Syed AQ, et al. Benefit of low-fat over low-carbohydrate diet on endothelial health in obesity. Hypertension. 2008;51(2):376–382. doi:10.1161/HYPERTENSIONAHA.107.101824
  • Pirro M, Schillaci G, Savarese G, et al. Attenuation of inflammation with short-term dietary intervention is associated with a reduction of arterial stiffness in subjects with hypercholesterolaemia. Eur J Cardiovasc Prev Rehabil. 2004;11(6):497–502. doi:10.1097/01.hjr.0000152243.51327.2a
  • Steffen LM, Jacobs DR Jr, Stevens J, Shahar E, Carithers T, Folsom AR. Associations of whole-grain, refined-grain, and fruit and vegetable consumption with risks of all-cause mortality and incident coronary artery disease and ischemic stroke: the Atherosclerosis Risk in Communities (ARIC) Study. Am J Clin Nutr. 2003;78(3):383–390. doi:10.1093/ajcn/78.3.383
  • Mellen PB, Liese AD, Tooze JA, Vitolins MZ, Wagenknecht LE, Herrington DM. Whole-grain intake and carotid artery atherosclerosis in a multiethnic cohort: the Insulin Resistance Atherosclerosis Study. Am J Clin Nutr. 2007;85(6):1495–1502. doi:10.1093/ajcn/85.6.1495
  • Brock DW, Davis CK, Irving BA, et al. A high-carbohydrate, high-fiber meal improves endothelial function in adults with the metabolic syndrome. Diabetes Care. 2006;29(10):2313–2315. doi:10.2337/dc06-0917
  • Whisner CM, Angadi SS, Weltman NY, et al. Effects of low-fat and high-fat meals, with and without dietary fiber, on postprandial endothelial function, triglyceridemia, and glycemia in adolescents. Nutrients. 2019;11(11):11. doi:10.3390/nu11112626
  • Katz DL, Nawaz H, Boukhalil J, et al. Effects of oat and wheat cereals on endothelial responses. Prev Med. 2001;33(5):476–484. doi:10.1006/pmed.2001.0918
  • Edwards DG, Farquhar WB. Vascular effects of dietary salt. Curr Opin Nephrol Hypertens. 2015;24(1):8–13. doi:10.1097/MNH.0000000000000089
  • Tzemos N, Lim PO, Wong S, Struthers AD, MacDonald TM. Adverse cardiovascular effects of acute salt loading in young normotensive individuals. Hypertension. 2008;51(6):1525–1530. doi:10.1161/HYPERTENSIONAHA.108.109868
  • DuPont JJ, Greaney JL, Wenner MM, et al. High dietary sodium intake impairs endothelium-dependent dilation in healthy salt-resistant humans. J Hypertens. 2013;31(3):530–536. doi:10.1097/HJH.0b013e32835c6ca8
  • Todd AS, Macginley RJ, Schollum JB, et al. Dietary salt loading impairs arterial vascular reactivity. Am J Clin Nutr. 2010;91(3):557–564. doi:10.3945/ajcn.2009.28645
  • Gates PE, Tanaka H, Hiatt WR, Seals DR. Dietary sodium restriction rapidly improves large elastic artery compliance in older adults with systolic hypertension. Hypertension. 2004;44(1):35–41. doi:10.1161/01.HYP.0000132767.74476.64
  • Avolio AP, Clyde KM, Beard TC, Cooke HM, Ho KK, O’Rourke MF. Improved arterial distensibility in normotensive subjects on a low salt diet. Arteriosclerosis. 1986;6(2):166–169. doi:10.1161/01.ATV.6.2.166
  • Nicoll R, Henein MY. Caloric restriction and its effect on blood pressure, heart rate variability and arterial stiffness and dilatation: a review of the evidence. Int J Mol Sci. 2018;19(3):751. doi:10.3390/ijms19030751
  • Weiss EP, Fontana L. Caloric restriction: powerful protection for the aging heart and vasculature. Am J Physiol Heart Circ Physiol. 2011;301(4):H1205–H1219. doi:10.1152/ajpheart.00685.2011
  • Sasaki S, Higashi Y, Nakagawa K, et al. A low-calorie diet improves endothelium-dependent vasodilation in obese patients with essential hypertension. Am J Hypertens. 2002;15(4 Pt 1):302–309. doi:10.1016/S0895-7061(01)02322-6
  • Raitakari M, Ilvonen T, Ahotupa M, et al. Weight reduction with very-low-caloric diet and endothelial function in overweight adults: role of plasma glucose. Arterioscler Thromb Vasc Biol. 2004;24(1):124–128. doi:10.1161/01.ATV.0000109749.11042.7c
  • Clifton PM, Keogh JB, Foster PR, Noakes M. Effect of weight loss on inflammatory and endothelial markers and FMD using two low-fat diets. Int J Obes. 2005;29(12):1445–1451. doi:10.1038/sj.ijo.0803039
  • Di Daniele N, Marrone G, Di Lauro M, et al. Effects of Caloric restriction diet on arterial hypertension and endothelial dysfunction. Nutrients. 2021;13(1):274. doi:10.3390/nu13010274
  • Guo Y, Luo S, Ye Y, Yin S, Fan J, Xia M. Intermittent fasting improves cardiometabolic risk factors and alters gut microbiota in metabolic syndrome patients. J Clin Endocrinol Metab. 2021;106(1):64–79. doi:10.1210/clinem/dgaa644
  • Azemi AK, Siti-Sarah AR, Mokhtar SS, Rasool AHG. Time-Restricted feeding improved vascular endothelial function in a high-fat diet-induced obesity rat model. Vet Sci. 2022;9(5). doi:10.3390/vetsci9050217
  • Petersen KS, Clifton PM, Lister N, Keogh JB. Effect of weight loss induced by energy restriction on measures of arterial compliance: a systematic review and meta-analysis. Atherosclerosis. 2016;247:7–20. doi:10.1016/j.atherosclerosis.2016.01.042
  • Petersen KS, Blanch N, Keogh JB, Clifton PM. Effect of weight loss on pulse wave velocity: systematic review and meta-analysis. Arterioscler Thromb Vasc Biol. 2015;35(1):243–252. doi:10.1161/ATVBAHA.114.304798
  • Nordstrand N, Gjevestad E, Hertel JK, et al. Arterial stiffness, lifestyle intervention and a low-calorie diet in morbidly obese patients-a nonrandomized clinical trial. Obesity. 2013;21(4):690–697. doi:10.1002/oby.20099
  • Van Schinkel LD, Bakker LE, Jonker JT, et al. Cardiovascular flexibility in middle-aged overweight South Asians vs white Caucasians: response to short-term caloric restriction. Nutr Metab Cardiovasc Dis. 2015;25(4):403–410. doi:10.1016/j.numecd.2014.12.007
  • Campisi J, Kapahi P, Lithgow GJ, Melov S, Newman JC, Verdin E. From discoveries in ageing research to therapeutics for healthy ageing. Nature. 2019;571(7764):183–192. doi:10.1038/s41586-019-1365-2
  • Pignolo RJ, Passos JF, Khosla S, Tchkonia T, Kirkland JL. Reducing Senescent Cell Burden in Aging and Disease. Trends Mol Med. 2020;26(7):630–638. doi:10.1016/j.molmed.2020.03.005
  • Khosla S, Farr JN, Tchkonia T, Kirkland JL. The role of cellular senescence in ageing and endocrine disease. Nat Rev Endocrinol. 2020;16(5):263–275. doi:10.1038/s41574-020-0335-y
  • Roos CM, Zhang B, Palmer AK, et al. Chronic senolytic treatment alleviates established vasomotor dysfunction in aged or atherosclerotic mice. Aging Cell. 2016;15(5):973–977. doi:10.1111/acel.12458
  • Childs BG, Gluscevic M, Baker DJ, et al. Senescent cells: an emerging target for diseases of ageing. Nat Rev Drug Discov. 2017;16(10):718–735. doi:10.1038/nrd.2017.116
  • Triggle CR, Mohammed I, Bshesh K, et al. Metformin: is it a drug for all reasons and diseases? Metabolism. 2022;133:155223. doi:10.1016/j.metabol.2022.155223
  • Rena G, Hardie DG, Pearson ER. The mechanisms of action of metformin. Diabetologia. 2017;60(9):1577–1585. doi:10.1007/s00125-017-4342-z
  • Barzilai N, Crandall JP, Kritchevsky SB, Espeland MA. Metformin as a Tool to Target Aging. Cell Metab. 2016;23(6):1060–1065. doi:10.1016/j.cmet.2016.05.011
  • Campbell JM, Bellman SM, Stephenson MD, Lisy K. Metformin reduces all-cause mortality and diseases of ageing independent of its effect on diabetes control: a systematic review and meta-analysis. Ageing Res Rev. 2017;40:31–44. doi:10.1016/j.arr.2017.08.003
  • Podhorecka M, Ibanez B, Dmoszyńska A. Metformin - its potential anti-cancer and anti-aging effects. Postepy Hig Med Dosw. 2017;71:170–175. doi:10.5604/01.3001.0010.3801
  • Glossmann HH, Lutz OMD. Metformin and aging: a review. Gerontology. 2019;65(6):581–590. doi:10.1159/000502257
  • Soukas AA, Hao H, Wu L. Metformin as anti-aging therapy: is it for everyone? Trends Endocrinol Metab. 2019;30(10):745–755. doi:10.1016/j.tem.2019.07.015
  • Wang C, Chen B, Feng Q, Nie C, Li T. Clinical perspectives and concerns of metformin as an anti-aging drug. Aging Med. 2020;3(4):266–275. doi:10.1002/agm2.12135
  • Kaeberlein M, Powers RW, Steffen KK, et al. Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science. 2005;310(5751):1193–1196. doi:10.1126/science.1115535
  • Bjedov I, Toivonen JM, Kerr F, et al. Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. Cell Metab. 2010;11(1):35–46. doi:10.1016/j.cmet.2009.11.010
  • Robida-Stubbs S, Glover-Cutter K, Lamming DW, et al. TOR signaling and rapamycin influence longevity by regulating SKN-1/Nrf and DAF-16/FoxO. Cell Metab. 2012;15(5):713–724. doi:10.1016/j.cmet.2012.04.007
  • Wang R, Yu Z, Sunchu B, et al. Rapamycin inhibits the secretory phenotype of senescent cells by a Nrf2-independent mechanism. Aging Cell. 2017;16(3):564–574. doi:10.1111/acel.12587
  • Lesniewski LA, Seals DR, Walker AE, et al. Dietary rapamycin supplementation reverses age-related vascular dysfunction and oxidative stress, while modulating nutrient-sensing, cell cycle, and senescence pathways. Aging Cell. 2017;16(1):17–26. doi:10.1111/acel.12524
  • Joannides R, Etienne I, Iacob M, et al. Comparative effects of sirolimus and cyclosporin on conduit arteries endothelial function in kidney recipients. Transpl Int. 2010;23(11):1135–1143. doi:10.1111/j.1432-2277.2010.01122.x
  • Joannidès R, Monteil C, de Ligny BH, et al. Immunosuppressant regimen based on sirolimus decreases aortic stiffness in renal transplant recipients in comparison to cyclosporine. Am J Transplant. 2011;11(11):2414–2422. doi:10.1111/j.1600-6143.2011.03697.x
  • Yoshino J, Mills KF, Yoon MJ, Imai S. Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab. 2011;14(4):528–536. doi:10.1016/j.cmet.2011.08.014
  • Yoshida M, Satoh A, Lin JB, et al. Extracellular vesicle-contained eNAMPT delays aging and extends lifespan in mice. Cell Metab. 2019;30(2):329–342.e325. doi:10.1016/j.cmet.2019.05.015
  • Das A, Huang GX, Bonkowski MS, et al. Impairment of an endothelial NAD(+)-H(2)S signaling network is a reversible cause of vascular aging. Cell. 2018;173(1):74–89.e20. doi:10.1016/j.cell.2018.02.008
  • de Picciotto NE, Gano LB, Johnson LC, et al. Nicotinamide mononucleotide supplementation reverses vascular dysfunction and oxidative stress with aging in mice. Aging Cell. 2016;15(3):522–530. doi:10.1111/acel.12461
  • Martens CR, Denman BA, Mazzo MR, et al. Chronic nicotinamide riboside supplementation is well-tolerated and elevates NAD(+) in healthy middle-aged and older adults. Nat Commun. 2018;9(1):1286. doi:10.1038/s41467-018-03421-7