217
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Bile Acid Network and Vascular Calcification-Associated Diseases: Unraveling the Intricate Connections and Therapeutic Potential

, &
Pages 1749-1767 | Received 18 Jul 2023, Accepted 10 Oct 2023, Published online: 21 Oct 2023

References

  • Cai J, Rimal B, Jiang C, et al. Bile acid metabolism and signaling, the microbiota, and metabolic disease. Pharmacol Ther. 2022;237:108238. doi:10.1016/j.pharmthera.2022.108238
  • Kalhan SC, Guo L, Edmison J, et al. Plasma Metabolomic Profile in Non-Alcoholic Fatty Liver Disease. Metabolism. 2011;60(3):404–413. doi:10.1016/j.metabol.2010.03.006
  • Grant SM, DeMorrow S. Bile Acid Signaling in Neurodegenerative and Neurological Disorders. Int J Mol Sci. 2020;21(17):5982. doi:10.3390/ijms21175982
  • Iijima K. [Bone and calcium update; diagnosis and therapy of bone metabolism disease update. Regulatory Mechanism of Mammalian Sirtuin SIRT1 in Vascular calcification: impact of vascular smooth muscle cell senescence]. Clin Calcium. 2011;21(12):53–60.
  • Pan W, Jie W, Huang H. Vascular calcification: molecular mechanisms and therapeutic interventions. MedComm. 2023;4(1):e200. doi:10.1002/mco2.200
  • Singh A, Tandon S, Tandon C. An update on vascular calcification and potential therapeutics. Mol Biol Rep. 2021;48(1):887–896. doi:10.1007/s11033-020-06086-y
  • Charach L, Charach G, Karniel E, et al. Peripheral Vascular Disease and Carotid Artery Disease Are Associated with Decreased Bile Acid Excretion. Bioengineering. 2023;10(8):935. doi:10.3390/bioengineering10080935
  • Shimizu H, Hagio M, Iwaya H, et al. Deoxycholic Acid Is Involved in the Proliferation and Migration of Vascular Smooth Muscle Cells. J Nutr Sci Vitaminol (Tokyo). 2014;60(6):450–454. doi:10.3177/jnsv.60.450
  • Schwabl P, Hambruch E, Seeland BA, et al. The FXR agonist PX20606 ameliorates portal hypertension by targeting vascular remodelling and sinusoidal dysfunction. J Hepatol. 2017;66(4):724–733. doi:10.1016/j.jhep.2016.12.005
  • Kida T, Murata T, Hori M, Ozaki H. Chronic stimulation of farnesoid X receptor impairs nitric oxide sensitivity of vascular smooth muscle. Am J Phys. 2009;296(1):H195–H201. doi:10.1152/ajpheart.00679.2008
  • Chiang JYL. Bile Acid Metabolism and Signaling. Compr Physiol. 2013;3:1191–1212. doi:10.1002/cphy.c120023
  • Chiang JYL, Ferrell JM. Bile acid receptors FXR and TGR5 signaling in fatty liver diseases and therapy. Am J Physiol Gastrointest Liver Physiol. 2020;318(3):G554–G573. doi:10.1152/ajpgi.00223.2019
  • Shulpekova Y, Shirokova E, Zharkova M, et al. A Recent Ten-Year Perspective: bile Acid Metabolism and Signaling. Molecules. 2022;27(6):1983. doi:10.3390/molecules27061983
  • Chiang JYL, Ferrell JM. Bile Acid Metabolism in Liver Pathobiology. Gene Expr. 2018;18(2):71–87. doi:10.3727/105221618X15156018385515
  • Wahlström A, Sayin SI, Marschall H-U, Bäckhed F. Intestinal Crosstalk between Bile Acids and Microbiota and Its Impact on Host Metabolism. Cell Metab. 2016;24(1):41–50. doi:10.1016/j.cmet.2016.05.005
  • Fiorucci S, Carino A, Baldoni M, et al. Bile Acid Signaling in Inflammatory Bowel Diseases. Dig Dis Sci. 2021;66(3):674–693. doi:10.1007/s10620-020-06715-3
  • Winston JA, Theriot CM. Diversification of host bile acids by members of the gut microbiota. Gut Microbes. 2019;11(2):158–171. doi:10.1080/19490976.2019.1674124
  • Shin D-J, Wang L. Bile Acid-Activated Receptors: a Review on FXR and Other Nuclear Receptors. In: Fiorucci S, Distrutti E, editors. Bile Acids and Their Receptors. Cham: Springer International Publishing; 2019:51–72.
  • Asami J, Kimura KT, Fujita-Fujiharu Y, et al. Structure of the bile acid transporter and HBV receptor NTCP. Nature. 2022;606(7916):1021–1026. doi:10.1038/s41586-022-04845-4
  • Chiang JYL, Ferrell JM. Bile Acids as Metabolic Regulators and Nutrient Sensors. Annu Rev Nutr. 2019;39(1):175–200. doi:10.1146/annurev-nutr-082018-124344
  • Sayin SI, Wahlström A, Felin J, et al. Gut Microbiota Regulates Bile Acid Metabolism by Reducing the Levels of Tauro-beta-muricholic Acid, a Naturally Occurring FXR Antagonist. Cell Metab. 2013;17(2):225–235. doi:10.1016/j.cmet.2013.01.003
  • Wang H, Chen J, Hollister K, et al. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol Cell. 1999;3(5):543–553. doi:10.1016/s1097-2765(00)80348-2
  • Kong B, Wang L, Chiang JYL, et al. Mechanism of Tissue-specific Farnesoid X Receptor in Suppressing the Expression of Genes in Bile-acid Synthesis in Mice. Hepatology. 2012;56(3):1034–1043. doi:10.1002/hep.25740
  • Chiang JYL, Ferrell JM. Discovery of farnesoid X receptor and its role in bile acid metabolism. Mol Cell Endocrinol. 2022;548:111618. doi:10.1016/j.mce.2022.111618
  • Davis RA, Miyake JH, Hui TY, Spann NJ. Regulation of cholesterol-7alpha-hydroxylase: bAREly missing a SHP. J Lipid Res. 2002;43(4):533–543. doi:10.1016/S0022-2275(20)31482-6
  • Ma K, Saha PK, Chan L, Moore DD. Farnesoid X receptor is essential for normal glucose homeostasis. J Clin Invest. 2006;116(4):1102–1109. doi:10.1172/JCI25604
  • Zheng X, Chen T, Jiang R, et al. Hyocholic acid species improve glucose homeostasis through a distinct TGR5 and FXR signaling mechanism. Cell Metab. 2021;33(4):791–803.e7. doi:10.1016/j.cmet.2020.11.017
  • Kim D-H, Xiao Z, Kwon S, et al. A dysregulated acetyl/SUMO switch of FXR promotes hepatic inflammation in obesity. EMBO J. 2015;34(2):184–199. doi:10.15252/embj.201489527
  • Sinal CJ, Tohkin M, Miyata M, et al. Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell. 2000;102:731–744. doi:10.1016/s0092-8674(00)00062-3
  • Clifford BL, Sedgeman LR, Williams KJ, et al. FXR activation protects against NAFLD via bile-acid-dependent reductions in lipid absorption. Cell Metab. 2021;33(8):1671–1684.e4. doi:10.1016/j.cmet.2021.06.012
  • Seok S, Fu T, Choi S-E, et al. Transcriptional regulation of autophagy by an FXR/CREB axis. Nature. 2014;516(7529):108. doi:10.1038/nature13949
  • Lee JM, Wagner M, Xiao R, et al. Nutrient-sensing nuclear receptors coordinate autophagy. Nature. 2014;516(7529):112–115. doi:10.1038/nature13961
  • Han SY, Song HK, Cha JJ, et al. Farnesoid X receptor (FXR) agonist ameliorates systemic insulin resistance, dysregulation of lipid metabolism, and alterations of various organs in a type 2 diabetic kidney animal model. Acta Diabetol. 2021;58(4):495–503. doi:10.1007/s00592-020-01652-z
  • Owen BM, Milona A, van Mil S, et al. Intestinal Detoxification Limits the Activation of Hepatic Pregnane X Receptor by Lithocholic Acid. Drug Metab Dispos. 2010;38(1):143–149. doi:10.1124/dmd.109.029306
  • Fang S, Suh JM, Reilly SM, et al. Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance. Nat Med. 2015;21(2):159–165. doi:10.1038/nm.3760
  • Pathak P, Xie C, Nichols RG, et al. Intestine farnesoid X receptor agonist and the gut microbiota activate G-protein bile acid receptor-1 signaling to improve metabolism. Hepatology. 2018;68(4):1574–1588. doi:10.1002/hep.29857
  • Dehondt H, Marino A, Butruille L, et al. Adipocyte-specific FXR-deficiency protects adipose tissue from oxidative stress and insulin resistance and improves glucose homeostasis. Mol Metab. 2023;69:101686. doi:10.1016/j.molmet.2023.101686
  • Yang J, de Vries HD, Mayeuf-Louchart A, et al. Role of bile acid receptor FXR in development and function of brown adipose tissue. Biochim Biophys Acta Mol Cell Biol Lipids. 2023;1868(2):159257. doi:10.1016/j.bbalip.2022.159257
  • Yty L, Swales KE, Thomas GJ, et al. Farnesoid X Receptor Ligands Inhibit Vascular Smooth Muscle Cell Inflammation and Migration. Arterioscler Thromb Vasc Biol. 2007;27(12):2606–2611. doi:10.1161/ATVBAHA.107.152694
  • Thomas C, Gioiello A, Noriega L, et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab. 2009;10(3):167–177. doi:10.1016/j.cmet.2009.08.001
  • Ding L, Yang Q, Zhang E, et al. Notoginsenoside Ft1 acts as a TGR5 agonist but FXR antagonist to alleviate high fat diet-induced obesity and insulin resistance in mice. Acta Pharm Sin B. 2021;11(6):1541–1554. doi:10.1016/j.apsb.2021.03.038
  • Watanabe M, Houten SM, Mataki C, et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature. 2006;439(7075):484–489. doi:10.1038/nature04330
  • Castellanos-Jankiewicz A, Guzmán-Quevedo O, Fénelon VS, et al. Hypothalamic bile acid-TGR5 signaling protects from obesity. Cell Metab. 2021;33(7):1483–1492.e10. doi:10.1016/j.cmet.2021.04.009
  • Sasaki T, Kuboyama A, Mita M, et al. The exercise-inducible bile acid receptor Tgr5 improves skeletal muscle function in mice. J Biol Chem. 2018;293(26):10322–10332. doi:10.1074/jbc.RA118.002733
  • Abrigo J, Gonzalez F, Aguirre F, et al. Cholic acid and deoxycholic acid induce skeletal muscle atrophy through a mechanism dependent on TGR5 receptor. J Cell Physiol. 2021;236(1):260–272. doi:10.1002/jcp.29839
  • Ichikawa R, Takayama T, Yoneno K, et al. Bile acids induce monocyte differentiation toward interleukin-12 hypo-producing dendritic cells via a TGR5-dependent pathway. Immunology. 2012;136(2):153–162. doi:10.1111/j.1365-2567.2012.03554.x
  • Biagioli M, Carino A, Cipriani S, et al. The Bile Acid Receptor GPBAR1 Regulates the M1/M2 Phenotype of Intestinal Macrophages and Activation of GPBAR1 Rescues Mice from Murine Colitis. J Immunol. 2017;199(2):718–733. doi:10.4049/jimmunol.1700183
  • Pols TWH, Nomura M, Harach T, et al. TGR5 activation inhibits atherosclerosis by reducing macrophage inflammation and lipid loading. Cell Metab. 2011;14(6):747–757. doi:10.1016/j.cmet.2011.11.006
  • Sorrentino G, Perino A, Yildiz E, et al. Bile Acids Signal via TGR5 to Activate Intestinal Stem Cells and Epithelial Regeneration. Gastroenterology. 2020;159(3):956–968.e8. doi:10.1053/j.gastro.2020.05.067
  • Ma X, Chen J, Tian Y. Pregnane X receptor as the “sensor and effector” in regulating epigenome. J Cell Physiol. 2015;230(4):752–757. doi:10.1002/jcp.24838
  • Han S, Li T, Ellis E, et al. A Novel Bile Acid-Activated Vitamin D Receptor Signaling in Human Hepatocytes. Mol Endocrinol. 2010;24(6):1151–1164. doi:10.1210/me.2009-0482
  • Chaudhari SN, Luo JN, Harris DA, et al. A microbial metabolite remodels the gut-liver axis following bariatric surgery. Cell Host Microbe. 2021;29(3):408–424.e7. doi:10.1016/j.chom.2020.12.004
  • Pols TWH, Puchner T, Korkmaz HI, et al. Lithocholic acid controls adaptive immune responses by inhibition of Th1 activation through the Vitamin D receptor. PLoS One. 2017;12(5):e0176715. doi:10.1371/journal.pone.0176715
  • Yao B, He J, Yin X, et al. The protective effect of lithocholic acid on the intestinal epithelial barrier is mediated by the vitamin D receptor via a SIRT1/Nrf2 and NF-κB dependent mechanism in Caco-2 cells. Toxicol Lett. 2019;316:109–118. doi:10.1016/j.toxlet.2019.08.024
  • Durham AL, Speer MY, Scatena M, et al. Role of smooth muscle cells in vascular calcification: implications in atherosclerosis and arterial stiffness. Cardiovasc Res. 2018;114(4):590–600. doi:10.1093/cvr/cvy010
  • Sutton NR, Malhotra R, St. Hilaire C, et al. Molecular Mechanisms of Vascular Health: insights From Vascular Aging and Calcification. Arterioscler Thromb Vasc Biol. 2023;43(1):15–29. doi:10.1161/ATVBAHA.122.317332
  • Hashimoto N, Matsui I, Ishizuka S, et al. Lithocholic acid increases intestinal phosphate and calcium absorption in a vitamin D receptor dependent but transcellular pathway independent manner. Kidney Int. 2020;97(6):1164–1180. doi:10.1016/j.kint.2020.01.032
  • Miyazaki-Anzai S, Masuda M, Shiozaki Y, et al. Free Deoxycholic Acid Exacerbates Vascular Calcification in CKD through ER Stress-Mediated ATF4 Activation. Int J Med. 2021;360(2):857–868. DOI:10.34067/KID.0007502020
  • Miyazaki-Anzai S, Levi M, Kratzer A, et al. Farnesoid X Receptor Activation Prevents the Development of Vascular Calcification in ApoE −/− Mice With Chronic Kidney Disease. Circ Res. 2010;106(12):1807–1817. doi:10.1161/CIRCRESAHA.109.212969
  • Pacifico L, Andreoli GM, D’Avanzo M, et al. Role of osteoprotegerin/receptor activator of nuclear factor kappa B/receptor activator of nuclear factor kappa B ligand axis in nonalcoholic fatty liver disease. World J Gastroenterol. 2018;24(19):2073–2082. doi:10.3748/wjg.v24.i19.2073
  • Allison MA, Criqui MH, Wright CM. Patterns and Risk Factors for Systemic Calcified Atherosclerosis. Arterioscler Thromb Vasc Biol. 2004;24(2):331–336. doi:10.1161/01.ATV.0000110786.02097.0c
  • New SEP, Aikawa E. Cardiovascular Calcification – an Inflammatory Disease –. Circulation Journal. 2011;75(6):1305–1313. doi:10.1253/circj.CJ-11-0395
  • Bessueille L, Magne D. Inflammation: a culprit for vascular calcification in atherosclerosis and diabetes. Cell Mol Life Sci. 2015;72(13):2475–2489. doi:10.1007/s00018-015-1876-4
  • Shioi A, Ikari Y. Plaque Calcification During Atherosclerosis Progression and Regression. J Atheroscler Thromb. 2018;25(4):294–303. doi:10.5551/jat.RV17020
  • Akers EJ, Nicholls SJ, Di Bartolo BA. Plaque Calcification. Arterioscler Thromb Vasc Biol. 2019;39(10):1902–1910. doi:10.1161/ATVBAHA.119.311574
  • Yahagi K, Kolodgie FD, Otsuka F, et al. Pathophysiology of native coronary, vein graft, and in-stent atherosclerosis. Nat Rev Cardiol. 2016;13(2):79–98. doi:10.1038/nrcardio.2015.164
  • Charach G, Grosskopf I, Rabinovich A, et al. The association of bile acid excretion and atherosclerotic coronary artery disease. Therap Adv Gastroenterol. 2011;4(2):95–101. doi:10.1177/1756283X10388682
  • Liu S, He F, Zheng T, et al. Ligustrum robustum Alleviates Atherosclerosis by Decreasing Serum TMAO, Modulating Gut Microbiota, and Decreasing Bile Acid and Cholesterol Absorption in Mice. Mol Nutr Food Res. 2021;65(14):2100014. doi:10.1002/mnfr.202100014
  • Liu Y, Dou C, Wei G, et al. Usnea improves high-fat diet- and vitamin D3-induced atherosclerosis in rats by remodeling intestinal flora homeostasis. Front Pharmacol. 2022;13:1064872. doi:10.3389/fphar.2022.1064872
  • Ma Y, Li D, Liu W, et al. Resveratrol on the Metabolic Reprogramming in Liver: implications for Advanced Atherosclerosis. Front Pharmacol. 2021;12:747625. doi:10.3389/fphar.2021.747625
  • Byun S, Jung H, Chen J, et al. Phosphorylation of hepatic farnesoid X receptor by FGF19 signaling–activated Src maintains cholesterol levels and protects from atherosclerosis. J Biol Chem. 2019;294(22):8732–8744. doi:10.1074/jbc.RA119.008360
  • Fu Y, Feng H, Ding X, et al. Alisol B 23-acetate adjusts bile acid metabolisim via hepatic FXR-BSEP signaling activation to alleviate atherosclerosis. Phytomedicine. 2022;101:154120. doi:10.1016/j.phymed.2022.154120
  • Mencarelli A, Renga B, Distrutti E, Fiorucci S. Antiatherosclerotic effect of farnesoid X receptor. Am J Phys. 2009;296(2):H272–H281. doi:10.1152/ajpheart.01075.2008
  • Zhang Y, Wang X, Vales C, et al. FXR Deficiency Causes Reduced Atherosclerosis in Ldlr −/− Mice. Arterioscler Thromb Vasc Biol. 2006;26(10):2316–2321. doi:10.1161/01.ATV.0000235697.35431.05
  • Wu Q, Sun L, Hu X, et al. Suppressing the intestinal farnesoid X receptor/sphingomyelin phosphodiesterase 3 axis decreases atherosclerosis. J Clin Invest. 2021;131(9):e142865. doi:10.1172/JCI142865
  • Qi S, Luo X, Liu S, et al. The Critical Effect of Bile Acids in Atherosclerosis. J Cardiovasc Pharmacol. 2022;80(4):562. doi:10.1097/FJC.0000000000001320
  • Miyazaki-Anzai S, Masuda M, Levi M, et al. Dual Activation of the Bile Acid Nuclear Receptor FXR and G-Protein-Coupled Receptor TGR5 Protects Mice against Atherosclerosis. PLoS One. 2014;9(9):e108270. doi:10.1371/journal.pone.0108270
  • Miyazaki-Anzai S, Masuda M, Kohno S, et al. Simultaneous inhibition of FXR and TGR5 exacerbates atherosclerotic formation. J Lipid Res. 2018;59(9):1709–1713. doi:10.1194/jlr.M087239
  • Kida T, Tsubosaka Y, Hori M, et al. Bile Acid Receptor TGR5 Agonism Induces NO Production and Reduces Monocyte Adhesion in Vascular Endothelial Cells. Arterioscler Thromb Vasc Biol. 2013;33(7):1663–1669. doi:10.1161/ATVBAHA.113.301565
  • Schnatz PF, Nudy M, O’Sullivan DM, et al. Coronary Artery Vitamin D Receptor Expression and Plasma Concentrations of Vitamin D: their Association with Atherosclerosis. Menopause. 2012;19(9):967–973. doi:10.1097/gme.0b013e31824cfa8f
  • Oh J, Riek AE, Darwech I, et al. Deletion of Macrophage Vitamin D Receptor Promotes Insulin Resistance and Monocyte Cholesterol Transport to Accelerate Atherosclerosis in Mice. Cell Rep. 2015;10(11):1872–1886. doi:10.1016/j.celrep.2015.02.043
  • Sui Y, Meng Z, Park S-H, et al. Myeloid-specific deficiency of pregnane X receptor decreases atherosclerosis in LDL receptor-deficient mice[S]. J Lipid Res. 2020;61(5):696–706. doi:10.1194/jlr.RA119000122
  • Zhou C, King N, Chen KY, Breslow JL. Activation of PXR induces hypercholesterolemia in wild-type and accelerates atherosclerosis in apoE deficient mice. J Lipid Res. 2009;50(10):2004–2013. doi:10.1194/jlr.M800608-JLR200
  • Lin LM, Peng F, Liu YP, et al. Coadministration of VDR and RXR agonists synergistically alleviates atherosclerosis through inhibition of oxidative stress: an in vivo and in vitro study. Atherosclerosis. 2016;251:273–281. doi:10.1016/j.atherosclerosis.2016.06.005
  • Meissner M, Wolters H, de Boer RA, et al. Bile acid sequestration normalizes plasma cholesterol and reduces atherosclerosis in hypercholesterolemic mice. No additional effect of physical activity. Atherosclerosis. 2013;228(1):117–123. doi:10.1016/j.atherosclerosis.2013.02.021
  • Rattazzi M, Bertacco E, Puato M, et al. Hypertension and vascular calcification: a vicious cycle? J Hypertens. 2012;30(10):1885. doi:10.1097/HJH.0b013e328356c257
  • Kalra SS, Shanahan CM. Vascular calcification and hypertension: cause and effect. Ann Med. 2012;44(sup1):S85–S92. doi:10.3109/07853890.2012.660498
  • Ishimwe JA, Dola T, Ertuglu LA, Kirabo A. Bile acids and salt-sensitive hypertension: a role of the gut-liver axis. Am J Physiol Heart Circ Physiol. 2022;322(4):H636–H646. doi:10.1152/ajpheart.00027.2022
  • Li C, Li J, Weng X, et al. Farnesoid X receptor agonist CDCA reduces blood pressure and regulates vascular tone in spontaneously hypertensive rats. J Am Society oHypertension. 2015;9(7):507–516.e7. doi:10.1016/j.jash.2015.04.006
  • Guo C, Xie S, Chi Z, et al. Bile Acids Control Inflammation and Metabolic Disorder through Inhibition of NLRP3 Inflammasome. Immunity. 2016;45(4):802–816. doi:10.1016/j.immuni.2016.09.008
  • Zhang Q, He F, Kuruba R, et al. FXR-mediated regulation of angiotensin type 2 receptor expression in vascular smooth muscle cells. Cardiovasc Res. 2008;77(3):560–569. doi:10.1093/cvr/cvm068
  • Khurana S, Yamada M, Wess J, et al. Deoxycholyltaurine-induced vasodilation of rodent aorta is nitric oxide- and muscarinic M3 receptor-dependent. Eur J Pharmacol. 2005;517(1–2):103–110. doi:10.1016/j.ejphar.2005.05.037
  • Jadeja RN, Thounaojam MC, Bartoli M, Khurana S. Deoxycholylglycine, a conjugated secondary bile acid, reduces vascular tone by attenuating Ca2+ sensitivity via rho kinase pathway. Toxicol Appl Pharmacol. 2018;348:14–21. doi:10.1016/j.taap.2018.04.012
  • Pataia V, Papacleovoulou G, Nikolova V, et al. Paternal cholestasis exacerbates obesity-associated hypertension in male offspring but is prevented by paternal ursodeoxycholic acid treatment. Int J Obes. 2019;43(2):319–330. doi:10.1038/s41366-018-0095-0
  • Ren S-C, Mao N, Yi S, et al. Vascular Calcification in Chronic Kidney Disease: an Update and Perspective. Aging Dis. 2022;13(3):673–697. doi:10.14336/AD.2021.1024
  • Vervloet MG, van Ballegooijen AJ. Prevention and treatment of hyperphosphatemia in chronic kidney disease. Kidney Int. 2018;93(5):1060–1072. doi:10.1016/j.kint.2017.11.036
  • Zununi Vahed S, Mostafavi S, Hosseiniyan Khatibi SM, et al. Vascular Calcification: an Important Understanding in Nephrology. Vasc Health Risk Manag. 2020;16:167–180. doi:10.2147/VHRM.S242685
  • Villa-Bellosta R, Hamczyk MR, Andrés V. Novel phosphate-activated macrophages prevent ectopic calcification by increasing extracellular ATP and pyrophosphate. PLoS One. 2017;12(3):e0174998. doi:10.1371/journal.pone.0174998
  • Dai Z, Zhang X. Pathophysiology and Clinical Impacts of Chronic Kidney Disease on Coronary Artery Calcification. J Cardiovasc Dev Dis. 2023;10(5):207. doi:10.3390/jcdd10050207
  • Zhang Y-X, Tang R-N, Wang L-T, Liu B-C. Role of crosstalk between endothelial cells and smooth muscle cells in vascular calcification in chronic kidney disease. Cell Prolif. 2021;54(3):e12980. doi:10.1111/cpr.12980
  • Gai Z, Chu L, Hiller C, et al. Effect of chronic renal failure on the hepatic, intestinal, and renal expression of bile acid transporters. Am J Phys Renal Physiol. 2014;306(1):F130–F137. doi:10.1152/ajprenal.00114.2013
  • Wang X, Yang S, Li S, et al. Aberrant gut microbiota alters host metabolome and impacts renal failure in humans and rodents. Gut. 2020;69(12):2131–2142. doi:10.1136/gutjnl-2019-319766
  • Feng Y-L, Cao G, Chen D-Q, et al. Microbiome-metabolomics reveals gut microbiota associated with glycine-conjugated metabolites and polyamine metabolism in chronic kidney disease. Cellular and molecular life sciences. CMLS. 2019;76(24):4961–4978. doi:10.1007/s00018-019-03155-9
  • Zhang Z-M, Yang L, Wan Y, et al. Integrated gut microbiota and fecal metabolomics reveal the renoprotective effect of Rehmanniae Radix Preparata and Corni Fructus on adenine-induced CKD rats. J Chromatogr B Analyt Technol Biomed Life Sci. 2021;1174:122728. doi:10.1016/j.jchromb.2021.122728
  • Jovanovich A, Isakova T, Block G, et al. Deoxycholic Acid, a Metabolite of Circulating Bile Acids, and Coronary Artery Vascular Calcification in CKD. Am J Kidney Dis. 2018;71(1):27–34. doi:10.1053/j.ajkd.2017.06.017
  • Chen W, Fitzpatrick J, Sozio SM, et al. Identification of Novel Biomarkers and Pathways for Coronary Artery Calcification in Nondiabetic Patients on Hemodialysis Using Metabolomic Profiling. Kidney360. 2020;2:279–289. doi:10.34067/KID.0004422020
  • Jovanovich A, Cai X, Frazier R, et al. Deoxycholic Acid and Coronary Artery Calcification in the Chronic Renal Insufficiency Cohort. J Am Heart Assoc. 2022;11(7):e022891. doi:10.1161/JAHA.121.022891
  • Masuda M, Miyazaki‐Anzai S, Levi M, et al. PERK‐eIF2α‐ATF4‐CHOP Signaling Contributes to TNFα‐Induced Vascular Calcification. J Am Heart Assoc. 2013;2(5):e000238. doi:10.1161/JAHA.113.000238
  • Li C, Zhang S, Chen X, et al. Farnesoid X receptor activation inhibits TGFBR1/TAK1-mediated vascular inflammation and calcification via miR-135a-5p. Commun Biol. 2020;3(1):327. doi:10.1038/s42003-020-1058-2
  • Zhao K, He J, Zhang Y, et al. Activation of FXR protects against renal fibrosis via suppressing Smad3 expression. Sci Rep. 2016;6(1):37234. doi:10.1038/srep37234
  • Hu Z, Ren L, Wang C, et al. Effect of Chenodeoxycholic Acid on Fibrosis, Inflammation and Oxidative Stress in Kidney in High-Fructose-Fed Wistar Rats. Kidney Blood Press Res. 2012;36(2):85–97. doi:10.1159/000341485
  • Wang XX, Jiang T, Shen Y, et al. The farnesoid X receptor modulates renal lipid metabolism and diet-induced renal inflammation, fibrosis, and proteinuria. Am J Physiol Renal Physiol. 2009;297(6):F1587–1596. doi:10.1152/ajprenal.00404.2009
  • Wang XX, Wang D, Luo Y, et al. FXR/TGR5 Dual Agonist Prevents Progression of Nephropathy in Diabetes and Obesity. J Am Soc Nephrol. 2018;29(1):118–137. doi:10.1681/ASN.2017020222
  • Panda DK, Bai X, Sabbagh Y, et al. Defective interplay between mTORC1 activity and endoplasmic reticulum stress-unfolded protein response in uremic vascular calcification. Am J Phys Renal Physiol. 2018;314(6):F1046–F1061. doi:10.1152/ajprenal.00350.2017
  • Yoon YM, Kim S, Han Y-S, et al. TUDCA-treated chronic kidney disease-derived hMSCs improve therapeutic efficacy in ischemic disease via PrPC. Redox Biol. 2019;22:101144. doi:10.1016/j.redox.2019.101144
  • Li L, Guo Z-Y, Wang J, et al. Tauroursodeoxycholic acid inhibits TGF-β1-induced renal fibrosis markers in cultured renal mesangial cells by regulating endoplasmic reticulum stress. Exp Ther Med. 2022;23(6):432. doi:10.3892/etm.2022.11359
  • Yun SP, Yoon YM, Lee JH, et al. Tauroursodeoxycholic Acid Protects against the Effects of P-Cresol-Induced Reactive Oxygen Species via the Expression of Cellular Prion Protein. Int J Mol Sci. 2018;19(2):352. doi:10.3390/ijms19020352
  • Hartmann P, Hochrath K, Horvath A, et al. Modulation of the intestinal bile acid/farnesoid X receptor/fibroblast growth factor 15 axis improves alcoholic liver disease in mice. Hepatology. 2018;67(6):2150–2166. doi:10.1002/hep.29676
  • Zheng T, Kim N-Y, Yim M. Fexaramine Inhibits Receptor Activator of Nuclear Factor-κB Ligand-induced Osteoclast Formation via Nuclear Factor of Activated T Cells Signaling Pathways. J Bone Metab. 2017;24(4):207–215. doi:10.11005/jbm.2017.24.4.207
  • Jiang T, Wang XX, Scherzer P, et al. Farnesoid X receptor modulates renal lipid metabolism, fibrosis, and diabetic nephropathy. Diabetes. 2007;56(10):2485–2493. doi:10.2337/db06-1642
  • Li L, Zhao H, Chen B, et al. FXR activation alleviates tacrolimus-induced post-transplant diabetes mellitus by regulating renal gluconeogenesis and glucose uptake. J Transl Med. 2019;17(1):418. doi:10.1186/s12967-019-02170-5
  • Kim D-H, Park JS, Choi H-I, et al. The critical role of FXR is associated with the regulation of autophagy and apoptosis in the progression of AKI to CKD. Cell Death Dis. 2021;12(4):320. doi:10.1038/s41419-021-03620-z
  • Hu T, Chouinard M, Cox AL, et al. Farnesoid X Receptor Agonist Reduces Serum Asymmetric Dimethylarginine Levels through Hepatic Dimethylarginine Dimethylaminohydrolase-1 Gene Regulation*. J Biol Chem. 2006;281(52):39831–39838. doi:10.1074/jbc.M606779200
  • Fujimori K, Iguchi Y, Yamashita Y, et al. Synthesis of Novel Farnesoid X Receptor Agonists and Validation of Their Efficacy in Activating Differentiation of Mouse Bone Marrow-Derived Mesenchymal Stem Cells into Osteoblasts. Molecules. 2019;24(22):4155. doi:10.3390/molecules24224155
  • Wang XX, Jiang T, Shen Y, et al. Diabetic nephropathy is accelerated by farnesoid X receptor deficiency and inhibited by farnesoid X receptor activation in a type 1 diabetes model. Diabetes. 2010;59(11):2916–2927. doi:10.2337/db10-0019
  • Lin C, Yu B, Liu X, et al. Obeticholic acid inhibits hepatic fatty acid uptake independent of FXR in mouse. Biomed Pharmacother. 2022;150:112984. doi:10.1016/j.biopha.2022.112984
  • Kumar DP, Rajagopal S, Mahavadi S, et al. Activation of transmembrane bile acid receptor TGR5 stimulates insulin secretion in pancreatic β cells. Biochem Biophys Res Commun. 2012;427(3):600–605. doi:10.1016/j.bbrc.2012.09.104
  • Kumar DP, Asgharpour A, Mirshahi F, et al. Activation of Transmembrane Bile Acid Receptor TGR5 Modulates Pancreatic Islet α Cells to Promote Glucose Homeostasis. J Biol Chem. 2016;291(13):6626–6640. doi:10.1074/jbc.M115.699504
  • Wang XX, Edelstein MH, Gafter U, et al. G Protein-Coupled Bile Acid Receptor TGR5 Activation Inhibits Kidney Disease in Obesity and Diabetes. J Am Soc Nephrology. 2016;27(5):1362. doi:10.1681/ASN.2014121271
  • Rizzo G, Passeri D, De Franco F, et al. Functional Characterization of the Semisynthetic Bile Acid Derivative INT-767, a Dual Farnesoid X Receptor and TGR5 Agonist. Mol Pharmacol. 2010;78(4):617–630. doi:10.1124/mol.110.064501
  • Comeglio P, Cellai I, Mello T, et al. INT-767 prevents NASH and promotes visceral fat brown adipogenesis and mitochondrial function. J Endocrinol. 2018;238(2):107–127. doi:10.1530/JOE-17-0557
  • McMahan RH, Wang XX, Cheng LL, et al. Bile acid receptor activation modulates hepatic monocyte activity and improves nonalcoholic fatty liver disease. J Biol Chem. 2013;288(17):11761–11770. doi:10.1074/jbc.M112.446575
  • Jadhav K, Xu Y, Xu Y, et al. Reversal of metabolic disorders by pharmacological activation of bile acid receptors TGR5 and FXR. Mol Metab. 2018;9:131–140. doi:10.1016/j.molmet.2018.01.005
  • Lanzer P, Hannan FM, Lanzer JD, et al. Medial Arterial Calcification: JACC State-of-The-Art Review. J Am Coll Cardiol. 2021;78(11):1145–1165. doi:10.1016/j.jacc.2021.06.049
  • Yahagi K, Kolodgie FD, Lutter C, et al. ATVB in Focus series on Vascular Calcification in Diabetes. Arterioscler Thromb Vasc Biol. 2017;37(2):191–204. doi:10.1161/ATVBAHA.116.306256
  • Boström KI, Jumabay M, Matveyenko A, et al. Activation of Vascular Bone Morphogenetic Protein Signaling in Diabetes Mellitus. Circ Res. 2011;108(4):446–457. doi:10.1161/CIRCRESAHA.110.236596
  • Fadini GP, Albiero M, Menegazzo L, et al. Widespread Increase in Myeloid Calcifying Cells Contributes to Ectopic Vascular Calcification in Type 2 Diabetes. Circ Res. 2011;108(9):1112–1121. doi:10.1161/CIRCRESAHA.110.234088
  • Yuan X, Wang R, Han B, et al. Functional and metabolic alterations of gut microbiota in children with new-onset type 1 diabetes. Nat Commun. 2022;13(1):6356. doi:10.1038/s41467-022-33656-4
  • Lamichhane S, Sen P, Dickens AM, et al. Dysregulation of secondary bile acid metabolism precedes islet autoimmunity and type 1 diabetes. Cell Rep Med. 2022;3(10):100762. doi:10.1016/j.xcrm.2022.100762
  • Zhao L, Lou H, Peng Y, et al. Elevated levels of circulating short-chain fatty acids and bile acids in type 2 diabetes are linked to gut barrier disruption and disordered gut microbiota. Diabetes Res Clin Pract. 2020;169:108418. doi:10.1016/j.diabres.2020.108418
  • Sonne DP, van Nierop FS, Kulik W, et al. Postprandial Plasma Concentrations of Individual Bile Acids and FGF-19 in Patients With Type 2 Diabetes. J Clin Endocrinol Metab. 2016;101(8):3002–3009. doi:10.1210/jc.2016-1607
  • Wang X-H, Xu F, Cheng M, et al. Fasting serum total bile acid levels are associated with insulin sensitivity, islet β-cell function and glucagon levels in response to glucose challenge in patients with type 2 diabetes. Endocr J. 2020;67(11):1107–1117. doi:10.1507/endocrj.EJ20-0201
  • Sonne DP, Hansen M, Knop FK. MECHANISMS IN ENDOCRINOLOGY: bile acid sequestrants in type 2 diabetes: potential effects on GLP1 secretion. Eur J Endocrinol. 2014;171(2):R47–R65. doi:10.1530/EJE-14-0154
  • Gao J, Xu B, Zhang X, et al. Association between serum bile acid profiles and gestational diabetes mellitus: a targeted metabolomics study. Clinica Chimica Acta. 2016;459:63–72. doi:10.1016/j.cca.2016.05.026
  • Chaudhari SN, Harris DA, Aliakbarian H, et al. Bariatric surgery reveals a gut-restricted TGR5 agonist with anti-diabetic effects. Nat Chem Biol. 2021;17(1):20–29. doi:10.1038/s41589-020-0604-z
  • Roschger P, Misof B, Paschalis E, et al. Changes in the Degree of Mineralization with Osteoporosis and its Treatment. Curr Osteoporos Rep. 2014;12(3):338–350. doi:10.1007/s11914-014-0218-z
  • Lampropoulos CE, Kalamara P, Konsta M, et al. Osteoporosis and vascular calcification in postmenopausal women: a cross-sectional study. Climacteric. 2016;19(3):303–307. doi:10.3109/13697137.2016.1164134
  • Hou Y-C, Lu C-L, Lu K-C. Mineral bone disorders in chronic kidney disease. Nephrology. 2018;23(S4):88–94. doi:10.1111/nep.13457
  • Demer LL, Tintut Y. Inflammatory, metabolic, and genetic mechanisms of vascular calcification. Arterioscler Thromb Vasc Biol. 2014;34(4):715–723. doi:10.1161/ATVBAHA.113.302070
  • Reid IR, Bristow SM. Calcium and Bone. In: Stern PH, editor. Bone Regulators and Osteoporosis Therapy. Springer International Publishing, Cham; 2020:259–280.
  • Bihari C, Lal D, Thakur M, et al. Suboptimal Level of Bone‐Forming Cells in Advanced Cirrhosis are Associated with Hepatic Osteodystrophy. Hepatol Commun. 2018;2(9):1095–1110. doi:10.1002/hep4.1234
  • Guañabens N, Ruiz-Gaspà S, Gifre L, et al. Sclerostin Expression in Bile Ducts of Patients With Chronic Cholestasis May Influence the Bone Disease in Primary Biliary Cirrhosis. J Bone Minera Res. 2016;31(9):1725–1733. doi:10.1002/jbmr.2845
  • Fonseca V, Epstein O, Gill DS, et al. Hyperparathyroidism and Low Serum Osteocalcin Despite Vitamin D Replacement in Primary Biliary Cirrhosis. J Clin Endocrinol Metab. 1987;64(5):873–877. doi:10.1210/jcem-64-5-873
  • Zhao Y-X, Song Y-W, Zhang L, et al. Association between bile acid metabolism and bone mineral density in postmenopausal women. Clinics. 2020;75:e1486. doi:10.6061/clinics/2020/e1486
  • Bellissimo MP, Roberts JL, Jones DP, et al. Metabolomic Associations with Serum Bone Turnover Markers. Nutrients. 2020;12(10):3161. doi:10.3390/nu12103161
  • Wen K, Tao L, Tao Z, et al. Fecal and Serum Metabolomic Signatures and Microbial Community Profiling of Postmenopausal Osteoporosis Mice Model. Front Cell Infect Microbiol. 2020;10:535310. doi:10.3389/fcimb.2020.535310
  • Deng D, Pan C, Wu Z, et al. An Integrated Metabolomic Study of Osteoporosis: discovery and Quantification of Hyocholic Acids as Candidate Markers. Front Pharmacol. 2021;12:725341. doi:10.3389/fphar.2021.725341
  • Cho SW, An JH, Park H, et al. Positive regulation of osteogenesis by bile acid through FXR. J Bone Minera Res. 2013;28(10):2109–2121. doi:10.1002/jbmr.1961
  • Id Boufker H, Lagneaux L, Fayyad-Kazan H, et al. Role of farnesoid X receptor (FXR) in the process of differentiation of bone marrow stromal cells into osteoblasts. Bone. 2011;49(6):1219–1231. doi:10.1016/j.bone.2011.08.013
  • Li Z, Huang J, Wang F, et al. Dual Targeting of Bile Acid Receptor-1 (TGR5) and Farnesoid X Receptor (FXR) Prevents Estrogen-Dependent Bone Loss in Mice. J Bone Minera Res. 2019;34(4):765–776. doi:10.1002/jbmr.3652
  • Wang Q, Wang G, Wang B, Yang H. Activation of TGR5 promotes osteoblastic cell differentiation and mineralization. Biomed Pharm. 2018;108:1797–1803. doi:10.1016/j.biopha.2018.08.093
  • Ruiz-Gaspà S, Guañabens N, Enjuanes A, et al. Lithocholic acid downregulates vitamin D effects in human osteoblasts. Eur J Clin Invest. 2010;40(1):25–34. doi:10.1111/j.1365-2362.2009.02230.x
  • Ruiz-Gaspà S, Guañabens N, Jurado S, et al. Bilirubin and bile acids in osteocytes and bone tissue. Potential role in the cholestatic-induced osteoporosis. Liver Int. 2020;40(11):2767–2775. doi:10.1111/liv.14630
  • Ruiz-Gaspà S, Guañabens N, Jurado S, et al. Bile acids and bilirubin effects on osteoblastic gene profile. Implications in the pathogenesis of osteoporosis in liver diseases. Gene. 2020;725:144167. doi:10.1016/j.gene.2019.144167
  • Ahn T-K, Kim K-T, Joshi HP, et al. Therapeutic Potential of Tauroursodeoxycholic Acid for the Treatment of Osteoporosis. Int J Mol Sci. 2020;21(12):4274. doi:10.3390/ijms21124274
  • Chandran M, Tay D, Mithal A. Supplemental calcium intake in the aging individual: implications on skeletal and cardiovascular health. Aging Clin Exp Res. 2019;31(6):765–781. doi:10.1007/s40520-019-01150-5