177
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Association of CHAT Gene Polymorphism rs3793790 and rs2177370 with Donepezil Response and the Risk of Alzheimer’s Disease Continuum

ORCID Icon, , , , , , , , & show all
Pages 1041-1050 | Received 03 Feb 2024, Accepted 04 Jun 2024, Published online: 12 Jun 2024

References

  • Alzheimer’s disease facts and figures. Alzheimers Dement. 2023;19(4):1598–1695. doi:10.1002/alz.13016
  • Vejandla B, Savani S, Appalaneni R, Veeravalli RS, Gude SS. Alzheimer’s disease: The past, present, and future of a globally progressive disease. Cureus. 2024;16(1):e51705. doi:10.7759/cureus.51705
  • Jack CR Jr, Bennett DA, Blennow K, et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018;14(4):535–562. doi:10.1016/j.jalz.2018.02.018
  • Singh B, Day CM, Abdella S, Garg S. Alzheimer’s disease current therapies, novel drug delivery systems and future directions for better disease management. J Control Release. 2024;367:402–424. doi:10.1016/j.jconrel.2024.01.047
  • Zuniga Santamaria T, Yescas Gomez P, Fricke Galindo I, Gonzalez Gonzalez M, Ortega Vazquez A, Lopez Lopez M. Pharmacogenetic studies in Alzheimer disease. Neurologia. 2022;37(4):287–303. doi:10.1016/j.nrleng.2018.03.022
  • Vnencak-Jones CL, Saucier LAG, Liu M, Gatto CL, Peterson JF. Pharmacogenomics: Genotype-Driven Medicine. J Appl Lab Med. 2024;9(1):183–186. doi:10.1093/jalm/jfad064
  • Roden DM, McLeod HL, Relling MV, et al. Pharmacogenomics. Lancet. 2019;394(10197):521–532. doi:10.1016/S0140-6736(19)31276-0
  • Pirmohamed M. Pharmacogenomics: current status and future perspectives. Nat Rev Genet. 2023;24(6):350–362. doi:10.1038/s41576-022-00572-8
  • Vuic B, Milos T, Tudor L, et al. Pharmacogenomics of Dementia: Personalizing the treatment of cognitive and neuropsychiatric symptoms. Genes. 2023;14(11). doi:10.3390/genes14112048
  • Lu J, Wang X, Wan L, et al. Gene Polymorphisms Affecting the Pharmacokinetics and Pharmacodynamics of Donepezil Efficacy. Front Pharmacol. 2020;11:934. doi:10.3389/fphar.2020.00934
  • Harold D, Macgregor S, Patterson CE, et al. A single nucleotide polymorphism in CHAT influences response to acetylcholinesterase inhibitors in Alzheimer’s disease. Pharmacogenet Genom. 2006;16(2):75–77. doi:10.1097/01.fpc.0000189799.88596.04
  • Lee KU, Lee JH, Lee DY, et al. The effect of choline acetyltransferase genotype on donepezil treatment response in patients with alzheimer’s disease. Clin Psychopharml Neurosci. 2015;13(2):168–173. doi:10.9758/cpn.2015.13.2.168
  • Scacchi R, Gambina G, Moretto G, Corbo RM. Variability of AChE, BChE, and ChAT genes in the late-onset form of Alzheimer’s disease and relationships with response to treatment with Donepezil and Rivastigmine. Am J Med Genet B Neuropsych Genet. 2009;150. doi:10.1002/ajmg.b.30846
  • Braga IL, Silva PN, Furuya TK, et al. Effect of APOE and CHRNA7 genotypes on the cognitive response to cholinesterase inhibitor treatment at different stages of Alzheimer’s disease. Am J Alzheimers Dis Other Demen. 2015;30(2):139–144. doi:10.1177/1533317514539540
  • Zamani M, Mohammadi M, Zamani H, Tavasoli A. Pharmacogenetic Study on the Impact of Rivastigmine Concerning Genetic Variants of A2M and IL-6 Genes on Iranian Alzheimer’s Patients. Mol Neurobiol. 2016;53(7):4521–4528. doi:10.1007/s12035-015-9387-8
  • Gaikwad S, Senapati S, Haque MA, Kayed R. Senescence, brain inflammation, and oligomeric tau drive cognitive decline in Alzheimer’s disease: evidence from clinical and preclinical studies. Alzheimers Dement. 2024;20(1):709–727. doi:10.1002/alz.13490
  • Yoon H, Myung W, Lim SW, et al. Association of the choline acetyltransferase gene with responsiveness to acetylcholinesterase inhibitors in Alzheimer’s disease. Pharmacopsychiatry. 2015;48(3):111–117. doi:10.1055/s-0035-1545300
  • Hampel H, Mesulam MM, Cuello AC, et al. Revisiting the Cholinergic Hypothesis in Alzheimer’s Disease: emerging Evidence from Translational and Clinical Research. J Prev Alzheimers Dis. 2019;6(1):2–15. doi:10.14283/jpad.2018.43
  • Chen XQ, Mobley WC. Exploring the Pathogenesis of Alzheimer Disease in Basal Forebrain Cholinergic Neurons: converging Insights From Alternative Hypotheses. Front Neurosci. 2019;13:446. doi:10.3389/fnins.2019.00446
  • Nunes-Tavares N, Santos LE, Stutz B, et al. Inhibition of choline acetyltransferase as a mechanism for cholinergic dysfunction induced by amyloid-β peptide oligomers. J Biol Chem. 2012;287(23):19377–19385. doi:10.1074/jbc.M111.321448
  • Yuan H, Xia Q, Ling K, Wang X, Wang X, Du X. Association of Choline Acetyltransferase Gene Polymorphisms (SNPs rs868750G/A, rs1880676G/A, rs2177369G/A and rs3810950G/A) with Alzheimer’s Disease Risk: a Meta-Analysis. PLoS One. 2016;11(7):e0159022. doi:10.1371/journal.pone.0159022
  • Hálová A, Janoutová J, Ewerlingová L, et al. CHAT gene polymorphism rs3810950 is associated with the risk of Alzheimer’s disease in the Czech population. J Biomed Sci. 2018;25(1):41. doi:10.1186/s12929-018-0444-2
  • Tang M, Rao D, Ma C, et al. Evaluation of choline acetyltransferase gene polymorphism (2384 G/A) in Alzheimer’s disease and mild cognitive impairment. Dement Geriatr Cognit Disord. 2008;26(1):9–14. doi:10.1159/000140612
  • Morris JC. The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology. 1993;43(11):2412–2414. doi:10.1212/WNL.43.11.2412-a
  • Katzman R, Zhang MY, Ouang Ya Q, et al. A Chinese version of the Mini-Mental State Examination; impact of illiteracy in a Shanghai dementia survey. J Clin Epidemiol. 1988;41(10):971–978. doi:10.1016/0895-4356(88)90034-0
  • Li H, Jia J, Yang Z. Mini-Mental State Examination in Elderly Chinese: a Population-Based Normative Study. J Alzheimers Dis. 2016;53(2):487–496. doi:10.3233/JAD-160119
  • Hensel A, Angermeyer MC, Riedel-Heller SG. Measuring cognitive change in older adults: reliable change indices for the Mini-Mental State Examination. J Neurol Neurosurg Psych. 2007;78(12):1298–1303. doi:10.1136/jnnp.2006.109074
  • Mitrushina M, Satz P. Reliability and validity of the Mini-Mental State Exam in neurologically intact elderly. J Clin Psychol. 1991;47(4):537–543. doi:10.1002/1097-4679(199107)47:4<537::AID-JCLP2270470411>3.0.CO;2-9
  • Salas-Hernández A, Galleguillos M, Carrasco M, et al. An updated examination of the perception of barriers for pharmacogenomics implementation and the usefulness of drug/gene pairs in Latin America and the Caribbean. Front Pharmacol. 2023;14:1175737. doi:10.3389/fphar.2023.1175737
  • Serrano-Pozo A, Das S, Hyman BT. APOE and Alzheimer’s disease: advances in genetics, pathophysiology, and therapeutic approaches. Lancet Neurol. 2021;20(1):68–80. doi:10.1016/S1474-4422(20)30412-9
  • Tolar M, Abushakra S, Hey JA, Porsteinsson A, Sabbagh M. Aducanumab, gantenerumab, BAN2401, and ALZ-801-The first wave of amyloid-targeting drugs for Alzheimer’s disease with potential for near term approval. Alzheimers Res Ther. 2020;12(1):95. doi:10.1186/s13195-020-00663-w
  • Xiao T, Jiao B, Zhang W, Tang B, Shen L. Effect of the CYP2D6 and APOE Polymorphisms on the Efficacy of Donepezil in Patients with Alzheimer’s Disease: a Systematic Review and Meta-Analysis. CNS Drugs. 2016;30(10):899–907. doi:10.1007/s40263-016-0356-1
  • Cheng YC, Huang YC, Liu HC. Effect of Apolipoprotein E varepsilon4 Carrier Status on Cognitive Response to Acetylcholinesterase Inhibitors in Patients with Alzheimer’s Disease: a Systematic Review and Meta-Analysis. Dement Geriatr Cognit Disord. 2018;45(5–6):335–352. doi:10.1159/000490175
  • Judd JM, Jasbi P, Winslow W, et al. Inflammation and the pathological progression of Alzheimer’s disease are associated with low circulating choline levels. Acta Neuro. 2023;146(4):565–583. doi:10.1007/s00401-023-02616-7
  • Jo S A, Ahn K, Kim JH, et al. ApoE-epsilon 4-dependent association of the choline acetyltransferase gene polymorphisms (2384G>A and 1882G>A) with Alzheimer’s disease. Clin Chim Acta. 2006;368(1–2). doi:10.1016/j.cca.2005.12.037
  • Resendes MC, Dobransky T, Ferguson SSG, Rylett RJ. Nuclear localization of the 82-kDa form of human choline acetyltransferase. J Biol Chem. 1999;274(27):19417–19421. doi:10.1074/jbc.274.27.19417
  • AlQot HE, Rylett RJ. A novel transgenic mouse model expressing primate-specific nuclear choline acetyltransferase: insights into potential cholinergic vulnerability. Sci Rep. 2023;13(1):3037. doi:10.1038/s41598-023-30155-4
  • Marucci G, Buccioni M, Ben DD, Lambertucci C, Volpini R, Amenta F. Efficacy of acetylcholinesterase inhibitors in Alzheimer’s disease. Neuropharmacology. 2021;190:108352. doi:10.1016/j.neuropharm.2020.108352
  • Cecchin E, Stocco G. Pharmacogenomics and Personalized Medicine. Genes. 2020;11(6):679. doi:10.3390/genes11060679