585
Views
7
CrossRef citations to date
0
Altmetric
Review

Identification of Biomarkers for Preeclampsia Based on Metabolomics

, , , , , , & show all
Pages 337-360 | Published online: 19 Mar 2022

References

  • Lisonkova S, Joseph KS. Incidence of preeclampsia: risk factors and outcomes associated with early- versus late-onset disease. Am J Obstet Gynecol. 2013;209(6):544e541–544 e512. doi:10.1016/j.ajog.2013.08.019
  • Abalos E, Cuesta C, Grosso AL, Chou D, Say L. Global and regional estimates of preeclampsia and eclampsia: a systematic review. Eur J Obstet Gynecol Reprod Biol. 2013;170(1):1–7. doi:10.1016/j.ejogrb.2013.05.005
  • Pittara T, Vyrides A, Lamnisos D, Giannakou K. Preeclampsia and long-term health outcomes for mother and infant: an umbrella review. BJOG. 2021;128:1421–1430. doi:10.1111/1471-0528.16683
  • Burton GJ, Redman CW, Roberts JM, Moffett A. Pre-eclampsia: pathophysiology and clinical implications. BMJ. 2019;366:l2381. doi:10.1136/bmj.l2381
  • Liang L, Rasmussen MH, Piening B, et al. Metabolic dynamics and prediction of gestational age and time to delivery in pregnant women. Cell. 2020;181(7):1680–1692 e1615. doi:10.1016/j.cell.2020.05.002
  • Nobakht BF. Application of metabolomics to preeclampsia diagnosis. Syst Biol Reprod Med. 2018;64(5):324–339. doi:10.1080/19396368.2018.1482968
  • Pang Z, Chong J, Zhou G, et al. MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021;49(W1):W388–W396. doi:10.1093/nar/gkab382
  • Kivelä J, Sormunen-Harju H, Girchenko PV, et al. Longitudinal metabolic profiling of maternal obesity, gestational diabetes and hypertensive pregnancy disorders. J Clin Endocrinol Metab. 2021;106:e4372–e4388. doi:10.1210/clinem/dgab475
  • Jääskeläinen T, Kärkkäinen O, Jokkala J, et al. A non-targeted LC-MS metabolic profiling of pregnancy: longitudinal evidence from Healthy and pre-eclamptic pregnancies. Metabolomics. 2021;17(2):20. doi:10.1007/s11306-020-01752-5
  • Harville EW, Li YY, Pan K, McRitchie S, Pathmasiri W, Sumner S. Untargeted analysis of first trimester serum to reveal biomarkers of pregnancy complications: a case-control discovery phase study. Sci Rep. 2021;11(1):3468. doi:10.1038/s41598-021-82804-1
  • Tan B, Ma Y, Zhang L, Li N, Zhang J. The application of metabolomics analysis in the research of gestational diabetes mellitus and preeclampsia. J Obstet Gynaecol Res. 2020;46(8):1310–1318. doi:10.1111/jog.14304
  • Sovio U, McBride N, Wood AM, et al. 4-Hydroxyglutamate is a novel predictor of pre-eclampsia. Int J Epidemiol. 2020;49(1):301–311. doi:10.1093/ije/dyz098
  • Lee SM, Kang Y, Lee EM, et al. Metabolomic biomarkers in midtrimester maternal plasma can accurately predict the development of preeclampsia. Sci Rep. 2020;10(1):16142. doi:10.1038/s41598-020-72852-4
  • Kenny LC, Thomas G, Poston L, et al. Prediction of preeclampsia risk in first time pregnant women: metabolite biomarkers for a clinical test. PLoS One. 2020;15(12):e0244369. doi:10.1371/journal.pone.0244369
  • Hong X, Zhang B, Liang L, et al. Postpartum plasma metabolomic profile among women with preeclampsia and preterm delivery: implications for long-term health. BMC Med. 2020;18(1). doi:10.1186/s12916-020-01741-4
  • Sander KN, Kim DH, Ortori CA, et al. Untargeted analysis of plasma samples from pre-eclamptic women reveals polar and apolar changes in the metabolome. Metabolomics. 2019;15(12):157. doi:10.1007/s11306-019-1600-8
  • Liu Y, Zu L, Cai W, et al. Metabolomics revealed decreased level of omega-3 PUFA-derived protective eicosanoids in pregnant women with pre-eclampsia. Clin Exp Pharmacol Physiol. 2019;46(8):705–710. doi:10.1111/1440-1681.13095
  • Lee SM, Moon JY, Lim BY, et al. Increased biosynthesis and accumulation of cholesterol in maternal plasma, but not amniotic fluid in pre-eclampsia. Sci Rep. 2019;9(1):1550. doi:10.1038/s41598-018-37757-3
  • Do Nascimento E, Menezes HC, Resende RR, Goulart VAM, Cardeal ZL. Determination of amino acids in plasma samples of preeclampsia patients by liquid chromatography coupled to high-resolution mass spectrometry. J Braz Chem Soc. 2019;30(10):2136–2143.
  • Austdal M, Silva GB, Bowe S, et al. Metabolomics identifies placental dysfunction and confirms flt-1 (FMS-like tyrosine kinase receptor 1) biomarker specificity. Hypertension. 2019;74(5):1136–1143. doi:10.1161/HYPERTENSIONAHA.119.13184
  • Yang X, Xu P, Zhang F, et al. AMPK hyper-activation alters fatty acids metabolism and impairs invasiveness of trophoblasts in preeclampsia. Cell Physiol Biochem. 2018;49(2):578–594. doi:10.1159/000492995
  • Powell KL, Carrozzi A, Stephens AS, et al. Utility of metabolic profiling of serum in the diagnosis of pregnancy complications. Placenta. 2018;66:65–73. doi:10.1016/j.placenta.2018.04.005
  • Jääskeläinen T, Kärkkäinen O, Jokkala J, et al. A non-targeted LC-MS profiling reveals elevated levels of carnitine precursors and trimethylated compounds in the cord plasma of pre-eclamptic infants. Sci Rep. 2018;8(1):14616. doi:10.1038/s41598-018-32804-5
  • Zhou X, Han T-L, Chen H, Baker PN, Qi H, Zhang H. Impaired mitochondrial fusion, autophagy, biogenesis and dysregulated lipid metabolism is associated with preeclampsia. Exp Cell Res. 2017;359(1):195–204. doi:10.1016/j.yexcr.2017.07.029
  • Kelly RS, Croteau-Chonka DC, Dahlin A, et al. Integration of metabolomic and transcriptomic networks in pregnant women reveals biological pathways and predictive signatures associated with preeclampsia. Metabolomics. 2017;13(1). doi:10.1007/s11306-016-1149-8
  • Chen T, He P, Tan Y, Xu D. Biomarker identification and pathway analysis of preeclampsia based on serum metabolomics. Biochem Biophys Res Commun. 2017;485(1):119–125. doi:10.1016/j.bbrc.2017.02.032
  • Bahado-Singh RO, Syngelaki A, Mandal R, et al. Metabolomic determination of pathogenesis of late-onset preeclampsia. J Maternal Fetal Neonatal Med. 2017;30(6):658–664. doi:10.1080/14767058.2016.1185411
  • Bahado-Singh R, Poon LC, Yilmaz A, et al. Integrated proteomic and metabolomic prediction of term preeclampsia. Sci Rep. 2017;7(1):16189. doi:10.1038/s41598-017-15882-9
  • Koster MPH, Vreeken RJ, Harms AC, et al. First-trimester serum acylcarnitine levels to predict preeclampsia: a metabolomics approach. Dis Markers. 2015;2015:1–8. doi:10.1155/2015/857108
  • Bahado-Singh RO, Syngelaki A, Akolekar R, et al. Validation of metabolomic models for prediction of early-onset preeclampsia. Am J Obstet Gynecol. 2015;213(4):530.e531–530.e510. doi:10.1016/j.ajog.2015.06.044
  • Austdal M, Thomsen LCV, Tangeras LH, et al. Metabolic profiles of placenta in preeclampsia using HR-MAS MRS metabolomics. Placenta. 2015;36(12):1455–1462. doi:10.1016/j.placenta.2015.10.019
  • Austdal M, Tangeras LH, Skrastad RB, et al. First trimester urine and serum metabolomics for prediction of preeclampsia and gestational hypertension: a prospective screening study. Int J Mol Sci. 2015;16(9):21520–21538. doi:10.3390/ijms160921520
  • Moon JY, Moon MH, Kim KT, et al. Cytochrome P450-mediated metabolic alterations in preeclampsia evaluated by quantitative steroid signatures. J Steroid Biochem Mol Biol. 2014;139:182–191. doi:10.1016/j.jsbmb.2013.02.014
  • Kuc S, Koster MPH, Pennings JLA, et al. Metabolomics profiling for identification of novel potential markers in early prediction of preeclampsia. PLoS One. 2014;9(5):e98540. doi:10.1371/journal.pone.0098540
  • Korkes HA, Sass N, Moron AF, et al. Lipidomic assessment of plasma and placenta of women with early-onset preeclampsia. PLoS One. 2014;9(10):e110747. doi:10.1371/journal.pone.0110747
  • Austdal M, Skrastad RB, Gundersen AS, Austgulen R, Iversen A-C, Bathen TF. Metabolomic biomarkers in serum and urine in women with preeclampsia. PLoS One. 2014;9(3):e91923. doi:10.1371/journal.pone.0091923
  • Senyavina NV, Khaustova SA, Grebennik TK, Pavlovich SV. Analysis of purine metabolites in maternal serum for evaluating the risk of gestosis. Bull Exp Biol Med. 2013;155(5):682–684. doi:10.1007/s10517-013-2225-y
  • Diaz SO, Barros AS, Goodfellow BJ, et al. Second trimester maternal urine for the diagnosis of trisomy 21 and prediction of poor pregnancy outcomes. J Proteome Res. 2013;12(6):2946–2957. doi:10.1021/pr4002355
  • Bahado-Singh RO, Akolekar R, Mandal R, et al. First-trimester metabolomic detection of late-onset preeclampsia. Am J Obstet Gynecol. 2013;208(1):58.e51–57. doi:10.1016/j.ajog.2012.11.003
  • Bahado-Singh RO, Akolekar R, Mandal R, et al. Metabolomics and first-trimester prediction of early-onset preeclampsia. J Maternal Fetal Neonatal Med. 2012;25(10):1840–1847. doi:10.3109/14767058.2012.680254
  • Odibo AO, Goetzinger KR, Odibo L, et al. First-trimester prediction of preeclampsia using metabolomic biomarkers: a discovery phase study. Prenat Diagn. 2011;31(10):990–994. doi:10.1002/pd.2822
  • Kenny LC, Broadhurst DI, Dunn W, et al. Robust early pregnancy prediction of later preeclampsia using metabolomic biomarkers. Hypertension. 2010;56(4):741–749. doi:10.1161/HYPERTENSIONAHA.110.157297
  • Turner E, Brewster JA, Simpson NAB, Walker JJ, Fisher J. Aromatic amino acid biomarkers of preeclampsia - A nuclear magnetic resonance investigation. Hypertens Pregnancy. 2008;27(3):225–235. doi:10.1080/10641950801955725
  • Kenny LC, Broadhurst D, Brown M, et al. Detection and identification of novel metabolomic biomarkers in preeclampsia. Reprod Sci. 2008;15(6):591–597. doi:10.1177/1933719108316908
  • Turner E, Brewster JA, Simpson NA, Walker JJ, Fisher J. Plasma from women with preeclampsia has a low lipid and ketone body content–a nuclear magnetic resonance study. Hypertens Pregnancy. 2007;26(3):329–342. doi:10.1080/10641950701436073
  • Jain S, Jayasimhulu K, Clark JF. Metabolomic analysis of molecular species of phospholipids from normotensive and preeclamptic human placenta electrospray ionization mass spectrometry. Front Biosci. 2004;9:3167–3175. doi:10.2741/1470
  • McBride N, Yousefi P, Sovio U, et al. Do mass spectrometry-derived metabolomics improve the prediction of pregnancy-related disorders? Findings from a UK birth cohort with independent validation. Metabolites. 2021;11(8). doi:10.3390/metabo11080530
  • He B, Liu Y, Maurya MR, et al. The maternal blood lipidome is indicative of the pathogenesis of severe preeclampsia. J Lipid Res. 2021;62:100118. doi:10.1016/j.jlr.2021.100118
  • Rana S, Lemoine E, Granger JP, Karumanchi SA. Preeclampsia: pathophysiology, challenges, and perspectives. Circ Res. 2019;124(7):1094–1112. doi:10.1161/CIRCRESAHA.118.313276
  • Jeyabalan A, Conrad KP. Renal function during normal pregnancy and preeclampsia. Front Biosci. 2007;12(1):2425–2437. doi:10.2741/2244
  • Scioscia M, Gumaa K, Rademacher TW. The link between insulin resistance and preeclampsia: new perspectives. J Reprod Immunol. 2009;82(2):100–105. doi:10.1016/j.jri.2009.04.009
  • Da silva AA, Do Carmo JM, Li X, Wang Z, Mouton AJ, Hall JE. Role of hyperinsulinemia and insulin resistance in hypertension: metabolic syndrome revisited. Can J Cardiol. 2020;36(5):671–682. doi:10.1016/j.cjca.2020.02.066
  • Qaid MM, Abdelrahman MM. Role of insulin and other related hormones in energy metabolism—a review. Cogent Food Agric. 2016;2(1):1267691. doi:10.1080/23311932.2016.1267691
  • Yoon MS. The emerging role of branched-chain amino acids in insulin resistance and metabolism. Nutrients. 2016;8(7):405. doi:10.3390/nu8070405
  • Lynch CJ, Adams SH. Branched-chain amino acids in metabolic signalling and insulin resistance. Nat Rev Endocrinol. 2014;10(12):723–736. doi:10.1038/nrendo.2014.171
  • Lu J, Xie G, Jia W, Jia WJ. Insulin resistance and the metabolism of branched-chain amino acids. Front Med. 2013;7(1):53–59. doi:10.1007/s11684-013-0255-5
  • Zhang Q, Ford LA, Goodman KD, et al. LC-MS/MS method for quantitation of seven biomarkers in human plasma for the assessment of insulin resistance and impaired glucose tolerance. J Chromatogr B. 2016;1038:101–108. doi:10.1016/j.jchromb.2016.10.025
  • Cheng S, Rhee EP, Larson MG, et al. Metabolite profiling identifies pathways associated with metabolic risk in humans. Circulation. 2012;125(18):2222–2231. doi:10.1161/CIRCULATIONAHA.111.067827
  • Demirci O, Tuğrul AS, Dolgun N, Sözen H, Eren S. Serum lipids level assessed in early pregnancy and risk of pre-eclampsia. J Obstet Gynaecol Res. 2011;37(10):1427–1432. doi:10.1111/j.1447-0756.2011.01562.x
  • Fushimi T, Suruga K, Oshima Y, Fukiharu M, Tsukamoto Y, Goda T. Dietary acetic acid reduces serum cholesterol and triacylglycerols in rats fed a cholesterol-rich diet. Br J Nutr. 2006;95(5):916–924. doi:10.1079/BJN20061740
  • Kondo S, Tayama K, Tsukamoto Y, Ikeda K, Yamori Y. Antihypertensive effects of acetic acid and vinegar on spontaneously hypertensive rats. Biosci Biotechnol Biochem. 2001;65(12):2690–2694. doi:10.1271/bbb.65.2690
  • Godhamgaonkar AA, Wadhwani NS, Joshi SR. Exploring the role of LC-PUFA metabolism in pregnancy complications. Prostaglandins Leukot Essent Fatty Acids. 2020;163:102203. doi:10.1016/j.plefa.2020.102203
  • Grube M, Meyer Zu Schwabedissen H, Draber K, et al. Expression, localization, and function of the carnitine transporter octn2 (slc22a5) in human placenta. Drug Metabol Disposit. 2005;33(1):31–37. doi:10.1124/dmd.104.001560
  • Aguer C, McCoin CS, Knotts TA, et al. Acylcarnitines: potential implications for skeletal muscle insulin resistance. FASEB J. 2015;29(1):336–345. doi:10.1096/fj.14-255901
  • Sánchez-Aranguren LC, Prada CE, Riaño-Medina CE, Lopez M. Endothelial dysfunction and preeclampsia: role of oxidative stress. Front Physiol. 2014;5:372. doi:10.3389/fphys.2014.00372
  • Wójcik OP, Koenig KL, Zeleniuch-Jacquotte A, Costa M, Chen Y. The potential protective effects of taurine on coronary heart disease. Atherosclerosis. 2010;208(1):19–25. doi:10.1016/j.atherosclerosis.2009.06.002
  • Desforges M, Parsons L, Westwood M, Sibley CP, Greenwood SL. Taurine transport in human placental trophoblast is important for regulation of cell differentiation and survival. Cell Death Dis. 2013;4(3):e559. doi:10.1038/cddis.2013.81
  • Desforges M, Ditchfield A, Hirst CR, et al. Reduced placental taurine transporter (TauT) activity in pregnancies complicated by pre-eclampsia and maternal obesity. Adv Exp Med Biol. 2013;776:81–91.
  • Reuvekamp A, Velsing-Aarts FV, Poulina IE, Capello JJ, Duits AJ. Selective deficit of angiogenic growth factors characterises pregnancies complicated by pre-eclampsia. Br J Obstet Gynaecol. 1999;106(10):1019–1022. doi:10.1111/j.1471-0528.1999.tb08107.x
  • Braekke K, Ueland PM, Harsem NK, Karlsen A, Blomhoff R, Staff AC. Homocysteine, cysteine, and related metabolites in maternal and fetal plasma in preeclampsia. Pediatr Res. 2007;62(3):319–324. doi:10.1203/PDR.0b013e318123fba2
  • Friesen RW, Novak EM, Hasman D, Innis SM. Relationship of dimethylglycine, choline, and betaine with oxoproline in plasma of pregnant women and their newborn infants. J Nutr. 2007;137(12):2641–2646. doi:10.1093/jn/137.12.2641
  • Wade AM, Tucker HN. Antioxidant characteristics of L-histidine. J Nutr Biochem. 1998;9(6):308–315.
  • Carnicer R, Crabtree MJ, Sivakumaran V, Casadei B, Kass DA. Nitric oxide synthases in heart failure. Antioxid Redox Signal. 2013;18(9):1078–1099. doi:10.1089/ars.2012.4824
  • Teerlink T, Hennekes MW, Mulder C, Brulez HF. Determination of dimethylamine in biological samples by high-performance liquid chromatography. J Chromatogr B. 1997;691(2):269–276. doi:10.1016/S0378-4347(96)00476-8
  • Tsikas D, Thum T, Becker T, et al. Accurate quantification of dimethylamine (DMA) in human urine by gas chromatography-mass spectrometry as pentafluorobenzamide derivative: evaluation of the relationship between DMA and its precursor asymmetric dimethylarginine (ADMA) in health and disease. J Chromatogr B. 2007;851(1–2):229–239. doi:10.1016/j.jchromb.2006.09.015
  • Böger RH. Asymmetric dimethylarginine, an endogenous inhibitor of nitric oxide synthase, explains the “L-arginine paradox” and acts as a novel cardiovascular risk factor. J Nutr. 2004;134(10):2842S–2847S; discussion 2853S. doi:10.1093/jn/134.10.2842S
  • Laursen JB, Somers M, Kurz S, et al. Endothelial regulation of vasomotion in apoE-deficient mice: implications for interactions between peroxynitrite and tetrahydrobiopterin. Circulation. 2001;103(9):1282–1288. doi:10.1161/01.CIR.103.9.1282
  • Wang Z, Cheng C, Yang X, Zhang C. L-phenylalanine attenuates high salt-induced hypertension in Dahl SS rats through activation of GCH1-BH4. PLoS One. 2021;16(4):e025012.
  • Emwas AH. The strengths and weaknesses of NMR spectroscopy and mass spectrometry with particular focus on metabolomics research. Methods Mol Biol. 2015;1277:161–193.
  • Souza RT, Mayrink U, Leite DF, et al. Metabolomics applied to maternal and perinatal health: a review of new frontiers with a translation potential. Clinics. 2019;74. doi:10.6061/clinics/2019/e894