145
Views
15
CrossRef citations to date
0
Altmetric
Review

Chimeric antigen receptor (CAR) T-cell therapy as a treatment option for patients with B-cell lymphomas: perspectives on the therapeutic potential of Axicabtagene ciloleucel

, , &
Pages 2393-2404 | Published online: 25 Mar 2019

References

  • World Cancer Report 2014. International agency for research on cancer; 2014 Available from: http://publications.iarc.fr/Non-Series-Publications/World-Cancer-Reports/World-Cancer-Report-2014. Accessed 1126, 2018.
  • Cunningham D, Hawkes EA, Jack A, et al. Rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisolone in patients with newly diagnosed diffuse large B-cell non-Hodgkin lymphoma: a phase 3 comparison of dose intensification with 14-day versus 21-day cycles. Lancet. 2013;381(9880):1817–1826. doi:10.1016/S0140-6736(13)60313-X23615461
  • Vitolo U, Trněný M, Belada D, et al. Obinutuzumab or rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone in previously untreated diffuse large B-cell lymphoma. J Clin Oncol. 2017;35(31):3529–3537. doi:10.1200/JCO.2017.73.340228796588
  • Sarkozy C, Sehn LH. Management of relapsed/refractory DLBCL. Best Pract Res Clin Haematol. 2018;31(3):209–216. doi:10.1016/j.beha.2018.07.01430213390
  • Gisselbrecht C, Glass B, Mounier N, et al. Salvage regimens with autologous transplantation for relapsed large B-cell lymphoma in the rituximab era. J Clin Oncol. 2010;28(27):4184–4190. doi:10.1200/JCO.2010.28.161820660832
  • Crump M, Kuruvilla J, Couban S, et al. Randomized comparison of gemcitabine, dexamethasone, and cisplatin versus dexamethasone, cytarabine, and cisplatin chemotherapy before autologous stem-cell transplantation for relapsed and refractory aggressive lymphomas: NCIC-CTG LY.12. J Clin Oncol. 2014;32(31):3490–3496. doi:10.1200/JCO.2013.53.959325267740
  • van Imhoff GW, McMillan A, Matasar MJ, et al. Ofatumumab versus rituximab salvage chemoimmunotherapy in relapsed or refractory diffuse large B-cell lymphoma: the ORCHARRD study. J Clin Oncol. 2017;35(5):544–551. doi:10.1200/JCO.2016.69.019828029326
  • Crump M, Neelapu SS, Farooq U, et al. Outcomes in refractory diffuse large B-cell lymphoma: results from the international SCHOLAR-1 study. Blood. 2017;130(16):1800–1808. doi:10.1182/blood-2017-03-76962028774879
  • Friedberg JW. Relapsed/refractory diffuse large B-cell lymphoma. Hematology Am Soc Hematol Educ Program. 2011;498–505. doi:10.1182/asheducation-2011.1.49822160081
  • Glass B, Hasenkamp J, Wulf G, et al. Rituximab after lymphoma-directed conditioning and allogeneic stem-cell transplantation for relapsed and refractory aggressive non-Hodgkin lymphoma (DSHNHL R3): an open-label, randomised, phase 2 trial. Lancet Oncol. 2014;15(7):757–766. doi:10.1016/S1470-2045(14)70161-524827808
  • Fenske TS, Ahn KW, Graff TM, et al. Allogeneic transplantation provides durable remission in a subset of DLBCL patients relapsing after autologous transplantation. Br J Haematol. 2016;174(2):235–248. doi:10.1111/bjh.1404626989808
  • Sehn LH, Kamdar M, Herrera AF, et al. Randomized phase 2 trial of polatuzumab vedotin (pola) with bendamustine and rituximab (BR) in relapsed/refractory (r/r) FL and DLBCL. J Clin Oncol. 2018;36(15_suppl):7507. doi:10.1200/JCO.2018.36.15_suppl.7507
  • Salles GA, Duell J, González-Barca E, et al. Single-arm phase II study of MOR208 combined with Lenalidomide in patients with relapsed or refractory diffuse large B-cell lymphoma: L-mind. Blood. 2018;131(abstract):227.
  • Dunleavy K, Pittaluga S, Maeda LS, et al. Dose-adjusted EPOCH-rituximab therapy in primary mediastinal B-cell lymphoma. N Engl J Med. 2013;368(15):1408–1416. doi:10.1056/NEJMoa121456123574119
  • Zinzani PL, Ribrag V, Moskowitz CH, et al. Safety and tolerability of pembrolizumab in patients with relapsed/refractory primary mediastinal large B-cell lymphoma. Blood. 2017;130(3):267–270. doi:10.1182/blood-2016-12-75838328490569
  • Link BK, Maurer MJ, Nowakowski GS, et al. Rates and outcomes of follicular lymphoma transformation in the immunochemotherapy era: a report from the University of Iowa/MayoClinic specialized program of research excellence molecular epidemiology resource. J Clin Oncol. 2013;31(26):3272–3278. doi:10.1200/JCO.2012.48.399023897955
  • Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci USA. 1989;86:10024–10028.2513569
  • Eshhar Z, Waks T, Gross G, Schindler DG Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci USA. 1993;90:720–724.8421711
  • Lamers CH, Sleijfer S, Vulto AG, et al. Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. J Clin Oncol. 2006;24(13):e20–2. doi:10.1200/JCO.2006.05.996416648493
  • Park JR, Digiusto DL, Slovak M, et al. Adoptive transfer of chimeric antigen receptor re-directed cytolytic T lymphocyte clones in patients with neuroblastoma. Mol Ther. 2007;15(4):825–833. doi:10.1038/sj.mt.630010417299405
  • Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, Rosenberg SA. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther. 2010;18(4):843–851. doi:10.1038/mt.2010.2420179677
  • Porter DL, Levine BL, Kalos M, Bagg A, June CH. Chimeric antigen receptor–modified T cells in chronic lymphoid leukemia. N Engl J Med. 2011;365:725–733. doi:10.1056/NEJMoa110384921830940
  • Grupp SA, Kalos M, Barrett D, et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med. 2013;368(16):1509–1518. doi:10.1056/NEJMoa121513423527958
  • Kochenderfer JN, Feldman SA, Zhao Y, et al. Construction and preclinical evaluation of an anti-CD19 chimeric antigen receptor. J Immunother. 2009;32:689–702. doi:10.1097/CJI.0b013e3181ac613819561539
  • Kochenderfer JN, Yu Z, Frasheri D, Restifo NP, Rosenberg SA. Adoptive transfer of syngeneic T cells transduced with a chimeric antigen receptor that recognizes murine CD19 can eradicate lymphoma and normal B cells. Blood. 2010;116(19):3875–3886. doi:10.1182/blood-2010-01-26504120631379
  • Kochenderfer JN, Dudley ME, Feldman SA, et al. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood. 2012;119:2709–2720. doi:10.1182/blood-2011-10-38438822160384
  • Neelapu SS, Locke FL, Bartlett NL, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 2017;37:2531–2544. doi:10.1056/NEJMoa1707447
  • US national Library of Medicine [Internet]. Available from: https://clinicaltrials.gov/ct2/results?cond=&term=axicabtagene+ciloleucel. Accessed 1126, 2018.
  • van der Stegen SJ, Hamieh M, Sadelain M. The pharmacology of second-generation chimeric antigen receptors. Nat Rev Drug Discov. 2015;14(7):499–509. doi:10.1038/nrd459726129802
  • Long AH, Haso WM, Shern JF, et al. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med. 2015;21(6):581–590. doi:10.1038/nm.383825939063
  • Better M, Chiruvolu V, Oliver J, et al. Production of KTE-C19 (Anti-CD19 CAR T cells) for ZUMA-1: A phase 1/2 multi-center study evaluating safety and efficacy in subjects with refractory aggressive Non-Hodgkin Lymphoma (NHL). Mol Ther. 2016;24(Supplement 1). doi:10.1016/S1525-0016(16)33096-9.
  • Wang X, Riviere I. Clinical manufacturing of CAR T cells: foundation of a promising therapy. Mol Ther Oncol. 2016;3:16015. doi:10.1038/mto.2016.15
  • Jain MD, Bachmeier CA, Phuoc VH, Chavez JC. Axicabtagene ciloleucel (KTE-C19), an anti-CD19 CAR T therapy for the treatment of relapsed/refractory aggressive B-cell non-Hodgkin’s lymphoma. Ther Clin Risk Manag. 2018;14:1007–1017. doi:10.2147/TCRM.S14503929910620
  • McGarrity GJ, Hoyah G, Winemiller A, et al. Patient monitoring and follow-up in lentiviral clinical trials. J Gene Med. 2013;15(2):78–82. doi:10.1002/jgm.269123322669
  • Yescarta (Axicabtagene ciloleucel) [package insert]. Santa Monica, CA, USA: Kite Pharma, Inc; 2017.
  • Kochenderfer JN, Dudley ME, Kassim SH, et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J Clin Oncol. 2015;33:540–549. doi:10.1200/JCO.2014.56.202525154820
  • Lee DW, Kochenderfer JN, Stetler-Stevenson M, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet. 2015;385(9967):517–528. doi:10.1016/S0140-6736(14)61403-325319501
  • Neelapu SS, Ghobadi A, Jacobson CA, et al. 2-year follow-up and high-risk subset analysis of Zuma-1, the pivotal study of Axicabtagene Ciloleucel (Axi-Cel) in patients with refractory large B cell Lymphoma. Blood. 2018;131:2967( abstract).29728406
  • Kochenderfer JN, Somerville RPT, Lu T, et al. Long-duration complete remissions of diffuse large B cell lymphoma after anti-CD19 chimeric antigen receptor T cell therapy. Mol Ther. 2017;25:2245–2253. doi:10.1016/j.ymthe.2017.07.00428803861
  • Kochenderfer JN, Somerville RPT, Lu T, et al. Lymphoma remissions caused by anti-CD19 chimeric antigen receptor T cells are associated with high serum interleukin-15 levels. J Clin Oncol. 2017;35:1803–1813. doi:10.1200/JCO.2016.71.302428291388
  • Locke FL, Neelapu SS, Bartlett NL, et al. Phase 1 results of ZUMA-1: A multicenter study of KTE-C19 anti-CD19 CAR T cell therapy in refractory aggressive lymphoma. Mol Ther. 2017;25(1):285–295. doi:10.1016/j.ymthe.2016.10.02028129122
  • Schuster SJ, Bishop MR, Tam CS, et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N Engl J Med. 2018. doi:10.1056/NEJMoa1804980
  • J Abramson, Gordon LI,  Palomba ML, et al. Updated safety and Long term clinical outcomes in TRANSCEND NHL 001, pivotal Trial of lisocabtagene maraleucel (JCAR017) in r/r aggressive NHL. J Clin Oncol. 2018; 36(suppl):7505 (abstract) . doi: 10.1200/JCO.2018.36.15_suppl.7505
  • Nastoupil LJ, Jain MD, Spiegel JY, et al. Axicabtagene ciloleucel (Axi-cel) CD19 Chimeric Antigen Receptor (CAR) T-cell therapy for relapsed/refractory large B-cell lymphoma: real world experience. Blood. 2018;131:91 ( abstract).
  • Jacobson CA, Hunter B, Armand P, et al. Axicabtagene ciloleucel in the real world: outcomes and predictors of response, resistance and toxicity. Blood. 2018;131:92 ( abstract).
  • Sano D, Nastoupil LJ, Fowler NH, et al. Safety of Axicabtagene ciloleucel CD19 CAR T-cell therapy in elderly patients with relapsed or refractory large B-cell lymphoma. Blood. 2018;131:96 ( abstract).
  • Spiegel JY, Sahaf B, Hossain N, et al. Elevated Axicabtagene ciloleucel (CAR-19) expansion by immunophenotyping is associated with toxicity in diffuse large B-cell lymphoma. Blood. 2018;131:576 ( abstract).
  • Faramand R, Kotani H, Morrissey D, et al. Prediction of CAR T-related toxicities in R/R DLBCL patients treated with axicabtagene ciloleucel using point of care cytokine measurements. Blood. 2018;131:95 ( abstract).29084774
  • Lee DW, Gardner R, Porter DL, et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood. 2014;124(2):188–195. doi:10.1182/blood-2014-05-55272924876563
  • Park JH, Rivière I, Gonen M, et al. Long-term follow-up of CD19 CAR Therapy in acute lymphoblastic leukemia. N Engl J Med. 2018;378(5):449–459. doi:10.1056/NEJMoa170991929385376
  • Neelapu SS, Tummala S, Kebriaei P, et al. Chimeric antigen receptor T-cell therapy – assessment and management of toxicities. Nat Rev Clin Oncol. 2018;15(1):47–62. doi:10.1038/nrclinonc.2017.14828925994
  • Viardot A, Bargou R. Bispecific antibodies in haematological malignancies. Cancer Treat Rev. 2018;65:87–95. doi:10.1016/j.ctrv.2018.04.00229635163
  • Norelli M, Camisa B, Barbiera G, et al. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat Med. 2018;24(6):739–748. doi:10.1038/s41591-018-0036-429808007
  • Cordeiro A, Bezerra E, Hill JA, et al. Late effects of CD19- targeted CAR-T cell therapy. Blood. 2018;131:576 ( abstract 223).
  • Neelapu SS, Locke FL, Bartlett NL, et al. A comparison of one year outcomes in ZUMA-1 (Axicabtagene ciloleucel) and SCHOLAR-1 in patients with refractory, aggressive Non-Hodgkin lymphoma (NHL). Blood. 2017;130:579 ( abstract).
  • Zheng PP, Kros JM, Li J. Approved CAR T cell therapies: ice bucket challenges on glaring safety risks and long-term impacts. Drug Discov Today. 2018;23(6):1175–1182. doi:10.1016/j.drudis.2018.02.01229501911
  • https://www.nice.org.uk/guidance/gid-ta10214/documents/appraisal-consultation-document, Accessed 12 2018.
  • Neelapu SS, Locke FL, Bartlett NL, et al. Long-term follow-up ZUMA-1: A pivotal trial of Axicabtagene ciloleucel (Axi-cel; KTE-C19) in patients with refractory aggressive Non-Hodgkin Lymphoma (NHL). Blood. 2017;130:578 ( abstract).
  • Oak J, Spiegel JY, Sahaf B, et al. Target Antigen downregulation and other mechanisms of failure after axicabtagene ciloleucel (CAR19) therapy. Blood. 2018;131:4656 ( abstract).
  • Vranic S, Ghosh N, Kimbrough J, et al. PD-L1 status in refractory lymphoma. PLoS One. 2016;11(11):e0166266. doi:10.1371/journal.pone.016626627861596
  • Cherkassky L, Morello A, Villena-Vargas J, et al. Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. J Clin Invest. 2016;126(8):3130–3144. doi:10.1172/JCI8309227454297
  • Feucht J, Kayser S, Gorodezki D, et al. T-cell responses against CD19+ pediatric acute lymphoblastic leukemia mediated by bispecific T-cell engager (BiTE) are regulated contrarily by PD-L1 and CD80/CD86 on leukemic blasts. Oncotarget. 2016;7(47):76902–76919. doi:10.18632/oncotarget.1235727708227
  • Hill BT, Roberts ZJ, Rossi JM, Smith MR. Marked re-expansion of chimeric antigen receptor (CAR) T cells and tumor regression following nivolumab treatment in a patient treated with Axicabtagene ciloleucel (Axi-cel; KTE-C19) for refractory Diffuse Large B cell Lymphoma (DLBCL). Blood. 2017;130:2825 ( abstract).
  • Jacobson CA, Locke FL, Miklos DB, et al. End of phase 1 results from zuma-6: axicabtagene ciloleucel (Axi-cel) in combination with atezolizumab for the treatment of patients with refractory diffuse large B cell lymphoma. Blood. 2018;131:4192 ( abstract).
  • Chow VA, Shadman M, Gopal AK. Translating anti-CD19 CAR T-cell therapy into clinical practice for relapsed/refractory diffuse large B-cell lymphoma. Blood. 2018;132(8):777–781. doi:10.1182/blood-2018-04-83921729914976
  • Oluwole OO, Bishop MR, Gisselbrecht C, et al. ZUMA-7: A phase 3 randomized trial of Axicabtagene ciloleucel (Axi-cel) versus standard-of-care (SOC) therapy in patients with relapsed/refractory diffuse large B cell lymphoma (R/R DLBCL). J Clin Oncol. 2018;36(15_suppl). abstract. doi:10.1200/JCO.2018.36.15_suppl.TPS7585
  • Zhang WY, Wang Y, Guo YL, et al. Treatment of CD20-directed chimeric antigen receptor-modified T cells in patients with relapsed or refractory B-cell non-Hodgkin lymphoma: an early phase IIa trial report. Signal Transduct Target Ther. 2016;1:16002. doi:10.1038/sigtrans.2016.229263894
  • Fry TJ, Shah NN, Orentas RJ, et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat Med. 2018;24(1):20–28. doi:10.1038/nm.444129155426
  • Yates B, Shalabi H, Salem D, et al. Sequential CD22 targeting impacts CD22 CAR-T cell response. Blood. 2018;131:282 ( abstract).
  • Han C, Sim SJ, Kim SH, et al. Desensitized chimeric antigen receptor T cells selectively recognize target cells with enhanced antigen expression. Nat Commun. 2018;9(1):468. doi:10.1038/s41467-018-02912-x29391449
  • Yang J, Li J, Zhang X, et al. A feasibility and safety study of CD19 and CD22 chimeric antigen receptors-modified T cell cocktail for therapy of B cell acute lymphoblastic leukemia. Blood. 2018;131:277 ( abstract).29191915
  • Amrolia PJ, Wynn R, Hough R, et al. Simultaneous targeting of CD19 and CD22: phase I Study of AUTO3, a bicistronic Chimeric Antigen Receptor (CAR) T-cell therapy, in pediatric patients with relapsed/refractory B-cell Acute Lymphoblastic Leukemia (r/r B-ALL): amelia study. Blood. 2018;131:279 ( abstract).
  • Schultz LM, Davis KL, Baggott C, et al. Phase 1 study of CD19/CD22 bispecific Chimeric Antigen Receptor (CAR) therapy in children and young adults with B cell Acute Lymphoblastic Leukemia (ALL). Blood. 2018;131:898 ( abstract).
  • Brudno J, Hartman S, Lam N, et al. Low levels of neurologic toxicity with retained anti-Lymphoma activity in a phase I clinical trial of T cells expressing a novel anti-CD19 CAR. Blood. 2018;131:898 ( abstract).
  • Boucher JC, Li G, Shrestha B, et al. Mutation of the CD28 costimulatory domain confers decreased CAR T cell exhaustion. Blood. 2018;131:966 ( abstract).
  • Feucht J, Sun J, Eyquem J, et al. Calibration of CAR activation potential directs alternative T cell fates and therapeutic potency. Nat Med. 2019;25:82–88. doi:10.1038/s41591-018-0290-530559421
  • Wang X, Popplewell LL, Wagner JR. Phase 1 studies of central memory–derived CD19 CAR T–cell therapy following autologous HSCT in patients with B-cell NHL. Blood. 2016;127:2980–2990. doi:10.1182/blood-2015-12-68672527118452
  • Popplewell LL, Wang X, Blanchard S, et al. CD19-CAR therapy using naive/memory or central memory T cells integrated into the autologous stem cell transplant regimen for patients with B-NHL. Blood. 2018;131:610 ( abstract).
  • Fraietta JA, Beckwith KA, Patel PR, et al. Ibrutinib enhances chimeric antigen receptor T-cell engraftment and efficacy in leukemia. Blood. 2016;127:1117–1127. doi:10.1182/blood-2015-11-67913426813675
  • Gauthier J, Hirayama AV, Hay KA, et al. Comparison of efficacy and toxicity of CD19-specific chimeric antigen receptor T-cells alone or in combination with ibrutinib for relapsed and/or refractory CLL. Blood. 2018;131:299 ( abstract).
  • Guedan S, Calderon H, Posey AD Jr, Maus MV. Engineering and design of chimeric antigen receptors. Mol Ther Methods Clin Dev. 2018;12:145–156. doi:10.1016/j.omtm.2018.12.00930666307
  • Lin C, Zhang J. Reformation in chimeric antigen receptor based cancer immunotherapy: redirecting natural killer cell. Biochim Biophys Acta Rev Cancer. 2018;1869(2):200–215. doi:10.1016/j.bbcan.2018.01.00529378229