85
Views
7
CrossRef citations to date
0
Altmetric
Original Research

Genome-wide DNA methylation and RNA expression profiles identified RIPK3 as a differentially methylated gene in Chlamydia pneumoniae infection lung carcinoma patients in China

, , , , &
Pages 5785-5797 | Published online: 28 Jun 2019

References

  • Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108. doi:10.3322/caac.2126225651787
  • Broaddus VC, Mason RC, Ernst JD, et al. Murray & Nadel’s Textbook of Respiratory Medicine E-Book. Philadelphia: Elsevier Health Sciences; 2015:6.
  • Pallis AG, Syrigos KN. Lung cancer in never smokers: disease characteristics and risk factors. Crit Rev Oncol Hematol. 2013;88(3):494–503. doi:10.1016/j.critrevonc.2013.06.01123921082
  • Littman AJ, Jackson LA, Vaughan TL. Chlamydia pneumoniae and lung cancer: epidemiologic evidence. Cancer Epidemiol Biomarkers Prev. 2005;14(4):773–778. doi:10.1158/1055-9965.EPI-04-059915824142
  • Hua‑Feng X, Yue‑Ming W, Hong L, et al. A meta‑analysis of the association between Chlamydia pneumoniae infection and lung cancer risk. Indian J Cancer. 2015;52(Suppl 2):e112–e115. doi:10.4103/0019-509X.17250626728667
  • Rizzo A, Carratelli CR, De Filippis A, et al. Transforming activities of Chlamydia pneumoniae in human mesothelial cells. Int Microbiol. 2014;17:185–193. doi:10.2436/20.1501.01.22126421735
  • Khan S, Imran A, Khan AA, et al. Systems biology approaches for the prediction of possible role of Chlamydia pneumoniae proteins in the etiology of lung cancer. PLoS One. 2016;11(2):e0148530. doi:10.1371/journal.pone.014853026871581
  • Blanco D, Vicent S, Fraga MF, et al. Molecular analysis of a multistep lung cancer model induced by chronic inflammation reveals epigenetic regulation of p16, activation of the DNA damage response pathway. Neoplasia. 2007;9(10):840–852.17971904
  • Portela A, Esteller M. Epigenetic modifications and human disease. Nat Biotechnol. 2010;28(10):1057–1068. doi:10.1038/nbt.168520944598
  • Bibikova M, Barnes B, Tsan C, et al. High density DNA methylation array with single CpG site resolution. Genomics. 2011;98(4):288–295. doi:10.1016/j.ygeno.2011.07.00721839163
  • Ehrich M, Correll D, van Den Boom D. Introduction to EpiTYPER for quantitative DNA methylation analysis using the MassARRAY system. Sequenom Application Note. 2006;1–7.
  • Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol. 1995;289–300. doi:10.1111/j.2517-6161.1995.tb02031.x
  • Haugen A. Molecular biology in the diagnosis of lung cancer. Tidsskrift for Den Norske Laegeforening. 2005;125(23):3283–3285.16327855
  • Yeung CLA, Tsang TY, Yau PL, et al. Human papillomavirus type 16 E6 suppresses microRNA-23b expression in human cervical cancer cells through DNA methylation of the host gene C9orf3. Oncotarget. 2017;8(7):12158–12173. doi:10.18632/oncotarget.1455528077801
  • Maeda M, Moro H, Ushijima T. Mechanisms for the induction of gastric cancer by helicobacter pylori infection: aberrant DNA methylation pathway. Gastric Cancer. 2017;20(1):8–15. doi:10.1007/s10120-016-0650-027718135
  • Chumduri C, Gurumurthy RK, Zadora PK, et al. Chlamydia infection promotes host DNA damage and proliferation but impairs the DNA damage tesponse. Cell Host Microbe. 2013;13(6):746–758. doi:10.1016/j.chom.2013.05.01023768498
  • Schmeck B, Beermann W, N’Guessan PD, et al. Simvastatin reduces Chlamydophila pneumoniae-mediated histone modifications and gene expression in cultured human endothelial cells. Circ Res. 2008;102(8):888–895. doi:10.1161/CIRCRESAHA.107.16130718309103
  • Jovana R, Aleksandra I-K, Elisabeth S, et al. Infection is associated with E-cadherin promoter methylation, downregulation of E-cadherin expression, and increased expression of fibronectin and α-SMA-implications for epithelial-mesenchymal transition. Front Cell Infect Microbiol. 2017;7:253. doi:10.3389/fcimb.2017.0051728660176
  • Schubeler D. Function and information content of DNA methylation. Nature. 2015;517(7534):321–326. doi:10.1038/nature1419225592537
  • Zemach A, McDaniel IE, Silva P, et al. Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science. 2010;328(5980):916–919. doi:10.1126/science.118636620395474
  • Yang C, Li J, Yu L, et al. Regulation of RIP3 by the transcription factor Sp1 and the epigenetic regulator UHRF1 modulates cancer cell necroptosis. Cell Death Dis. 2017;8:e3084. doi:10.1038/cddis.2017.51828981102
  • Koo G-B, Morgan MJ, Lee D-G, et al. Methylation-dependent loss of RIP3 expression in cancer represses programmed necrosis in response to chemotherapeutics. Cell Res. 2015;25:707–725. doi:10.1038/cr.2015.5625952668
  • Cho YS, Challa S, Moquin D, et al. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell. 2009;137(6):1112–1123. doi:10.1016/j.cell.2009.05.03719524513
  • Silke J, Rickard JA, Gerlic M. The diverse role of RIP kinases in necroptosis and inflammation. Nat Immunol. 2015;16(7):689–697. doi:10.1038/ni.320626086143
  • Sun L, Wang H, Wang Z, et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell. 2012;148(1):213–227. doi:10.1016/j.cell.2011.11.03122265413
  • Li J, McQuade T, Siemer AB, et al. The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis. Cell. 2012;150(2):339–350. doi:10.1016/j.cell.2012.06.01922817896
  • Newton K, Dugger DL, Wickliffe KE, et al. Activity of protein kinase RIPK3 determines whether cells die by necroptosis or apoptosis. Science. 2014;343(6177):1357–1360. doi:10.1126/science.124936124557836
  • Pasparakis M, Vandenabeele P. Necroptosis and its role in inflammation. Nature. 2015;517(7534):311. doi:10.1038/nature1419125592536
  • Linkermann A, Green DR. Necroptosis. N Engl J Med. 2014;370(5):455–465. doi:10.1056/NEJMra131005024476434
  • Mizumura K, Maruoka S, Gon Y, et al. The role of necroptosis in pulmonary diseases. Respir Investig. 2016;54(6):407–412. doi:10.1016/j.resinv.2016.03.008
  • Morgan MJ, You-Sun K. The serine threonine kinase RIP3: lost and found. BMB Rep. 2015;48:303–312.25858093
  • Fukasawa M, Kimura M, Morita S, et al. Microarray analysis of promoter methylation in lung cancers. J Hum Genet. 2006;51(4):368–374. doi:10.1007/s10038-005-0355-416435073
  • Tu PH, Elder G, Lazzarini RA, et al. Overexpression of the human NFM subunit in transgenic mice modifies the level of endogenous NFL and the phosphorylation state of NFH subunits. J Cell Biol. 1995;129(6):1629–1640. doi:10.1083/jcb.129.6.16297790359
  • Alberts B. Molecular Biology of the Cell. 4th ed. New York: Garland Science; 2002:652.
  • Kim MS, Chang X, LeBron C, et al. Neurofilament heavy polypeptide regulates the Akt-β-catenin pathway in human esophageal squamous cell carcinoma. PLoS One. 2010;5(2):e9003. doi:10.1371/journal.pone.000900320140245
  • Jeschke J, Van Neste L, Glöckner SC, et al. Biomarkers for detection and prognosis of breast cancer identified by a functional hypermethylome screen. Epigenetics. 2012;7(7):701–709. doi:10.4161/epi.2044522647880
  • Dubrowinskaja N, Gebauer K, Peters I, et al. Neurofilament heavy polypeptide CpG island methylation associates with prognosis of renal cell carcinoma and prediction of antivascular endothelial growth factor therapy response. Cancer Med. 2014;3(2):300–309. doi:10.1002/cam4.18124464810
  • Revill K, Wang T, Lachenmayer A, et al. Genome-wide methylation analysis and epigenetic unmasking identify tumor suppressor genes in hepatocellular carcinoma. Gastroenterology. 2013;145(6):1424–1435. e1–e25. doi:10.1053/j.gastro.2013.08.055
  • Alholle A, Brini AT, Gharanei S, et al. Functional epigenetic approach identifies frequently methylated genes in Ewing sarcoma. Epigenetics. 2013;8(11):1198–1204. doi:10.4161/epi.2626624005033
  • Shen Z, Chen B, Gan X, et al. Methylation of neurofilament light polypeptide promoter is associated with cell invasion and metastasis in NSCLC. Biochem Biophys Res Commun. 2016;470(3):627–634. doi:10.1016/j.bbrc.2016.01.09426801564
  • Pornour M, Ahangari G, Hejazi S, et al. Dopamine receptor gene (DRD1-DRD5) expression changes as stress factors associated with breast cancer. Asian Pac J Cancer Prev. 2013;15:10339–10343. doi:10.7314/APJCP.2014.15.23.10339
  • Campa D, Zienolddiny S, Lind H, et al. Polymorphisms of dopamine receptor/transporter genes and risk of non-small cell lung cancer. Lung Cancer. 2007;56(1):17–23. doi:10.1016/j.lungcan.2006.11.00717175058
  • Liao AJ, Su Q, Wang X, et al. Isolation and bioinformatics analysis of differentially methylated genomic fragments in human gastric cancer. World J Gastroenterol. 2008;14(9):1333. doi:10.3748/wjg.14.133318322944
  • Beaulieu JM, Gainetdinov RR. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev. 2011;63(1):182–217. doi:10.1124/pr.110.00264221303898