88
Views
3
CrossRef citations to date
0
Altmetric
Original Research

Conversion of immunohistochemical markers and breast density are associated with pathological response and prognosis in very young breast cancer patients who fail to achieve a pathological complete response after neoadjuvant chemotherapy

, , , &
Pages 5677-5690 | Published online: 20 Jun 2019

References

  • Fredholm H, Eaker S, Frisell J, Holmberg L, Fredriksson I, Lindman H. Breast cancer in young women: poor survival despite intensive treatment. PLoS One. 2009;4:e7695. doi:10.1371/journal.pone.000769519907646
  • Anders CK, Johnson R, Litton J, Phillips M, Bleyer A. Breast cancer before age 40 years. Semin Oncol. 2009;36:237–249. doi:10.1053/j.seminoncol.2009.03.00119460581
  • Meng J, Lang RG, Fan Y, Fu L. Clinicopathological and biological features of breast cancer in young females and their relationship with prognosis. Zhonghua Zhong Liu Za Zhi. 2007;29:284–288.17760256
  • Zhao Y, Dong XQ, Li RG, Song J, Zhang DW. Correlation between clinical-pathological factors and long-term follow-up in young breast cancer patients. Transl Oncol. 2015;8(4):265–272. doi:10.1016/j.tranon.2015.05.00126310372
  • Pelizzari G, Gerratana L, Basile D, et al. Post-neoadjuvant strategies in breast cancer: from risk assessment to treatment escalation. Cancer Treat Rev. 2019;72:7–14. doi:10.1016/j.ctrv.2018.10.01430414986
  • Faneyte IF, Schrama JG, Peterse JL, et al. Breast cancer response to neoadjuvant chemotherapy: predictive markers and relation with outcome. Br J Cancer. 2003;88(3):406–412. doi:10.1038/sj.bjc.660074912569384
  • Zhao Y, Dong XQ, Li RG, et al. Evaluation of the pathological response and prognosis following neoadjuvant chemotherapy in molecular subtypes of breast cancer. Onco Targets Ther. 2015;8:1511–1521. doi:10.2147/OTT.S8324326150728
  • Cortazar P, Zhang L, Untch M, et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet. 2014;384:164–172. doi:10.1016/S0140-6736(13)62422-824529560
  • Rose BS, Winer EP, Mamon HJ. Perils of the pathologic complete response. J Clin Oncol. 2016;34:3959–3962. doi:10.1200/JCO.2016.68.171827551115
  • Bonnefoi H, Litiere S, Piccart M, et al. Pathological complete response after neoadjuvant chemotherapy is an independent predictive factor irrespective of simplified breast cancer intrinsic subtypes: a landmark and two-step approach analyses from the EORTC 10994/BIG 1-00 phase III trial. Ann Oncol. 2014;25:1128–1136. doi:10.1093/annonc/mdu11824618153
  • Autier P, Boniol M, Smans M, Sullivan R, Boyle P. Statistical analysis in Swedish randomized trials on mammography screening and in other randomized trials on cancer screening: a systematic review. J R Soc Med. 2015;108:440–450. doi:10.1177/014107681559340326152677
  • Wang AT, Vachon CM, Brandt KR, Ghosh K. Breast density and breast cancer risk: a practical review. Mayo Clin Proc. 2014;89:548–557. doi:10.1016/j.mayocp.2013.12.01424684876
  • Kolb TM, Lichy J, Newhouse JH. Comparison of the performance of screening mammography, physical exam, and breast US and evaluation of factors that influence them: an analysis of 27,825 patient evaluations. Radiology. 2002;225:165–175. doi:10.1148/radiol.225101166712355001
  • Berg WA. Current status of supplemental screening in dense breasts. J Clin Oncol. 2016;34:1840–1845. doi:10.1200/JCO.2015.65.867426962096
  • Weigert JM. The Connecticut experiment: the third installment-4 years of screening women with dense breasts with bilateral ultrasound. Breast J. 2017;23:34–39. doi:10.1111/tbj.1267827647744
  • Tagliafico AS, Calabrese M, Mariscotti G, et al. Adjunct screening with tomosynthesis or ultrasound in women with mammographically negative dense breasts: interim report of a prospective comparative trial. J Clin Oncol. 2016;34:1882–1890. doi:10.1200/JCO.2015.63.414726962097
  • Huo CW, Chew G, Hill P, et al. High mammographic density is associated with an increase in stromal collagen and immune cells within the mammary epithelium. Breast Cancer Res. 2015;17:79. doi:10.1186/s13058-015-0592-126040322
  • van de Ven S, Smit VT, Dekker TJ, Nortier JW, Kroep JR. Discordances in ER, PR and HER2 receptors after neoadjuvant chemotherapy in breast cancer. Cancer Treat Rev. 2011;37:422–430. doi:10.1016/j.ctrv.2010.11.00621177040
  • Bertero L, Massa F, Metovic J, et al. Eighth Edition of the UICC Classification of Malignant Tumours: an overview of the changes in the pathological TNM classification criteria-What has changed and why? Virchows Arch. 2018;472(4):519–531. doi:10.1007/s00428-017-2276-y29209757
  • Ogston KN, Miller ID, Payne S. A new histological grading system to assess response of breast cancers to primary chemotherapy: prognostic significance and survival. Breast. 2003;12(5):320–327.14659147
  • Wolfe JN. Risk for breast cancer development determined by mammographic parenchymal pattern. Cancer. 1976;37:2486–2492.1260729
  • Sauter G, Lee J, Bartlett JM, Slamon DJ, Press MF. Guidelines for human epidermal growth factor receptor 2 testing: biologic and methodologic considerations. J Clin Oncol. 2009;27:1323–1333. doi:10.1200/JCO.2007.14.819719204209
  • Cheang MC, Chia SK, Voduc D, et al. Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J Natl Cancer Inst. 2009;101:736–750. doi:10.1093/jnci/djp08219436038
  • Zhang N, Moran MS, Huo Q, Haffty BG, Yang Q. The hormonal receptor status in breast cancer can be altered by neoadjuvant chemotherapy: a meta-analysis. Cancer Invest. 2011;29:594–598. doi:10.3109/07357907.2011.62191322011281
  • Kasami M, Uematsu T, Honda M, et al. Comparison of estrogen receptor, progesterone receptor and Her-2 status in breast cancer pre- and post-neoadjuvant chemotherapy. Breast. 2008;17:523–527. doi:10.1016/j.breast.2008.04.00218534850
  • Spring L, Greenup R, Niemierko A, et al. Pathologic complete response after neoadjuvant chemotherapy and long-term outcomes among young women with breast cancer. J Natl Compr Canc Netw. 2017;15(10):1216–1223. doi:10.6004/jnccn.2017.015828982747
  • Ongaro E, Gerratana L, Cinausero M, et al. Comparison of primary breast cancer and paired metastases: biomarkers discordance influence on outcome and therapy. Future Oncol. 2018;14(9):849–859. doi:10.2217/fon-2017-038429527957
  • Feeley LP, Mulligan AM, Pinnaduwage D, Bull SB, Andrulis IL. Distinguishing luminal breast cancer subtypes by Ki67, progesterone receptor or TP53 status provides prognostic information. Mod Pathol. 2014;27:554–561. doi:10.1038/modpathol.2013.15324051696
  • Urruticoechea A, Smith IE, Dowsett M. Proliferation marker Ki-67 in early breast cancer. J Clin Oncol. 2005;23:7212–7220. doi:10.1200/JCO.2005.07.50116192605
  • Cho N, Im SA, Cheon GJ, et al. Integrated 18F-FDG PET/MRI in breast cancer: early prediction of response to neoadjuvant chemotherapy. Eur J Nucl Med Mol Imaging. 2018;45(3):328–339. doi:10.1007/s00259-017-3849-329101445
  • Mottaghy FM. Is the whole larger than the sum of the parts? Integrated PET/MRI as a tool for response prediction. Eur J Nucl Med Mol Imaging. 2018;45:325–327. doi:10.1007/s00259-017-3908-929279944
  • Yang WT, Lewis MT, Hess K, et al. Decreased TGF-β signaling and increased COX2 expression in high risk women with increased mammographic breast density. Breast Cancer Res Treat. 2010;119(2):305–314. doi:10.1007/s10549-009-0350-019241157