53
Views
4
CrossRef citations to date
0
Altmetric
Original Research

Estimation of radiotherapy modalities for patients with stage I-II nasal natural killer T-Cell lymphoma

, , , , , , , , , , & show all
Pages 7219-7229 | Published online: 30 Jul 2019

References

  • Wu X, Li P, Zhao J, et al. A clinical study of 115 patients with extranodal natural killer/T-cell lymphoma, nasal type. Clin Oncol. 2008;20:619–625. doi:10.1016/j.clon.2008.05.011
  • Au WY, Weisenburger DD, Intragumtornchai T, et al. Clinical differences between nasal and extranasal NK/T-cell lymphoma: a study of 136 cases from the international peripheral T-cell lymphoma project. Blood. 2009;113:3931–3937. doi:10.1182/blood-2008-03-14647219029440
  • Liu X, Huang E, Wang Y, et al. Dosimetric comparison of helical tomotherapy, VMAT, fixed-field IMRT and 3D-conformal radiotherapy for stage I-II nasal natural killer T-cell lymphoma. Radiat Oncol. 2017;12:76. doi:10.1186/s13014-017-0812-128449713
  • Huang MJ, Jiang Y, Liu WP, et al. Early or up-front radiotherapy improved survival of localized extra nodal NK/T-cell lymphoma, nasal-type in the upper aerodigestive tract. Int J Radiat Oncol Biol Phys. 2008;70:166–174. doi:10.1016/j.ijrobp.2007.05.07317919841
  • Yang Y, Zhang YJ, Lin XB, et al. Role of radiotherapy in the combined treatment of patients with early-stage extra nodal nasal-type NK/T-cell lymphoma and analysis of prognostic factors. Chin J RadiatOncol. 2009;18:285–289.
  • Shen Q, Ma X, Hu W, Chen L, Huang J, Guo Y. Intensity-modulated radiotherapy versus three-dimensional conformal radiotherapy for stage I-II natural killer/Tcell lymphoma nasal type: dosimetric and clinical results. Radiat Oncol. 2013;8:152. doi:10.1186/1748-717X-8-15223800149
  • Liu X, Yong Y, Fu J, et al. A comparison of volumetric modulated arc therapy and sliding-window intensity-modulated radiotherapy in the treatment of stage I-II nasal natural killer/T-cell lymphoma. Med Dosim. 2016;4(1):42–46. doi:10.1016/j.meddos.2015.07.003
  • Deasy JO, Moiseenko V, Marks L, et al. radiotherapy dose-volume effects on salivary gland function. Int J Radiat Oncol Biol Phys. 2010;76(3):58–63. doi:10.1016/j.ijrobp.2009.06.090
  • Tward JD, Wendland MM, Shrleve DC, Szabo A, Gaffney DK. The risk of secondary malignancies over 30 years after the treatment of non-Hodgkin’s lymphoma. Cancer. 2006;107:108–115. doi:10.1002/cncr.2197116708354
  • Toda K, Shibuya H, Hayashi K, Ayukawa F. radiation-induced cancer after radiotherapy for non-hodgkin’s lymphoma of the head and neck: a retrospective study. Radiat Oncol. 2009;4:21. doi:10.1186/1748-717X-4-2119591686
  • Schneider U. Modeling the Risk of Secondary Malignancies after Radiotherapy. Genes. 2011;2:1033–1049. doi:10.3390/genes204103324710304
  • Schneider U. Mechanistic model of radiation-induced cancer after fractionated radiotherapy using the linear-quadratic formula. Med Phys. 2009;36:1138–1143. doi:10.1118/1.308979219472619
  • Grantzau T, Mellemkjaer L, Overgaard J. Second primary cancers after adjuvant radiotherapy in early breast cancer patients: a national population based study under the Danish Breast Cancer Cooperative Group (DBCG). Radiother Oncol. 2013;106:42–49. doi:10.1016/j.radonc.2013.01.00223395067
  • Bartkowiak D, Humble N, Suhr P, et al. Second cancer after radiotherapy,1981–2007. Radiother Oncol. 2012;105:122–126. doi:10.1016/j.radonc.2011.09.01321993405
  • Mingzan Z, Tuodan Z, Zhijian C, et al. Advanced nasopharyngeal carcinoma radiotherapy with volumetric modulated arcs and the potential role of flattening filter-free beams. Radiat Oncol. 2013;8:120. doi:10.1186/1748-717X-8-12023672519
  • Bragg CM, Wingate K, Conway J. Clinical implications of the anisotropic analytical algorithm for IMRT treatment planning and verification. Radiother Oncol. 2008;86:276–284. doi:10.1016/j.radonc.2008.01.01118249453
  • Tomita N, Kodaira T, Tachibana H, et al. A comparison of radiation treatment plans using IMRT with helical tomotherapy and 3Dconformal radiotherapy for nasal natural killer/T-cell lymphoma. Br J Radiol. 2009;82:756–763. doi:10.1259/bjr/8375837319366734
  • Shepard DM, Olivera GH, Reckwerdt PJ, Mackie TR. Iterative approaches to dose optimization in tomotherapy. Phys Med Biol. 2000;45:69–90. doi:10.1088/0031-9155/45/1/30610661584
  • Peters S, Schiefer H, Plasswilm L. A treatment planning study comparing Elekta VMAT and fixed field IMRT using the varian treatment planning system eclipse. Radiat Oncol. 2014;9:153. doi:10.1186/1748-717X-9-15325011529
  • Radiation Therapy Oncology Group (RTOG) 0615 Available from: http://irochouston.mdanderson.org/RPC/CREDENTIALING/files/0615-Master-2-16-11.pdf. Accessed 426, 2017.
  • Schneider U, Sumila M, Robotka J. Site-specific dose-response relationships for cancer induction from the combined Japanese A-bomb and Hodgkin cohorts for doses relevant to radiotherapy. Theor Biol Med Modell. 2011;8:27. doi:10.1186/1742-4682-8-27
  • Schneider U, Zwahlen D, Ross D, Kaser-Hotz B. Estimation of radiation-induced cancer from three-dimensional dose distributions: concept of organ equivalent dose. Int J Radiat Oncol Biol Phys. 2005;61(5):1510–1515. doi:10.1016/j.ijrobp.2004.12.04015817357
  • Pedicini P, Nappi A, Strigari L, et al. Correlation between egfr expression and accelerated proliferation during radiotherapy of head and neck squamous cell carcinoma. Radiat Oncol. 2012;7:143. doi:10.1186/1748-717X-7-14322920680
  • Bakhshandeh M, Hashemi B, Mahdavi SRM, et al. Normal Tissue Complication Probability Modeling of Radiation-Induced Hypothyroidism After Head-and-Neck Radiation Therapy. Int J Radiation Oncol Biol Phys. 2013;85(2). doi:10.1016/j.ijrobp.2012.03.034
  • Murdoch-Kinch C-A, Kim HM, Vineberg KA, et al. Dose-Effect Relationships for the Submandibular Salivary Glands and Implications for Their Sparing by Intensity Modulated Radiotherapy. Int J Radiat Oncol Biol Phys. 2008;72(2):373–382. doi:10.1016/j.ijrobp.2007.12.03318337023
  • Zwahlen DR, Bischoff LI, Gruber G, Sumila M, Schneider U. Estimation of second cancer risk after radiotherapy for rectal cancer: comparison of 3D conformal radiotherapy and volumetric modulated arc therapy using different high dose fractionation schemes. Radiat Oncol. 2016;11:149. doi:10.1186/s13014-016-0723-627832799
  • Bertelsen A, Hansen CR, Johansen J, Brink C. Single Arc volumetric modulated Arc therapy of head and neck cancer. Radiother Oncol. 2010;95:142–148. doi:10.1016/j.radonc.2010.01.01120188427
  • Sheng K, Molloy JA, Read PW. Intensity-modulated radiation therapy (IMRT) dosimetry of the head and neck: a comparison of treatment plans using linear accelerator- based IMRT and helical tomotherapy. Int J Radiat Oncol Biol Phys. 2006;V65N3:917–923. doi:10.1016/j.ijrobp.2006.02.038
  • Ploquin NP, Dunscombe PB. The cost of radiation therapy. Radiother Oncol. 2008;86:217–223. doi:10.1016/j.radonc.2008.01.00518237802
  • Peeters A, Grutters JPC, Pijls-Johannesma M, et al. How costly is particle therapy? Cost analysis of external beam radiotherapy with carbon-ions, protons and photons. Radiother Oncol. 2010;95:45–53. doi:10.1016/j.radonc.2009.12.00220106540
  • Suit H, Goldberg S, Niemierko A, et al. Secondary carcinogenesis in patients treated with radiation: a review of data on radiation-induced cancers in human, non-human primate, canine and rodent subjects. Radiat Res. 2007;167(1):12–42. doi:10.1667/RR0527.117214511
  • Berrington de Gonzalez A, Gilbert E, Curtis R, et al. Second solid cancers after radiation therapy: a systematic review of the epidemiologic studies of the radiation dose-response relationship. Int J Radiat Oncol Biol Phys. 2013;86(2):224–233. doi:10.1016/j.ijrobp.2012.09.00123102695
  • Cardis E, Howe G, Ron E, et al. Cancer consequences of the Chernobyl accident: 20 years on. J Radiol Prot. 2006;26(2):127–140. doi:10.1088/0952-4746/26/2/00116738412
  • Jin F, Luo H-L, Zhou J, et al. Cancer risk assessment in modern radiotherapy workflow with medical big data. Cancer Manag Res. 2018;10:1665–1675. doi:10.2147/CMAR.S16498029970965
  • Joosten A, Bochud F, Baechler S, Levi F, Mirimanoff RO, Moeckli R. Variability of a peripheral dose among various linac geometries for second cancer risk assessment. Phys Med Biol. 2011;56(16):5131–5151. doi:10.1088/0031-9155/56/16/00421775792
  • Kim DW, Chung WK, Shin D, et al. Risk of second cancer from scattered radiation of intensity-modulated radiotherapies with lung cancer. Radiat Oncol. 2013;8:47. doi:10.1186/1748-717X-8-4723452670
  • Eekers DB, Roelofs E, Jelen U, et al. Benefit of particle therapy in re-irradiation of head and neck patients. Results of a multicentric in silico ROCOCO trial. Radiother Oncol. 2016;121(3):387–394. doi:10.1016/j.radonc.2016.08.02027639891
  • Sachs RK, Brenner DJ. Solid tumor risks after high doses of ionizing radiation. Proc Natl Acad Sci USA. 2005;102:13040–13045. doi:10.1073/pnas.050664810216150705
  • LindaWalsh U. A method for determining weights for excess relative risk and excess absolute risk when applied in the calculation of lifetime risk of cancer from radiation exposure. Radiat Environ Biophys. 2013;52:135–145. doi:10.1007/s00411-012-0441-x23180110
  • Han EY, Paudel N, Sung J, Yoon M, Chung WK, Kim DW. Estimation of the risk of secondary malignancy arising from whole-breast irradiation: comparison of five radiotherapy modalities, including TomoHDA. Oncotarget. 2016;7(16):22960–22969. doi:10.18632/oncotarget.839227027239