109
Views
14
CrossRef citations to date
0
Altmetric
Original Research

GALE Promotes the Proliferation and Migration of Glioblastoma Cells and Is Regulated by miR-let-7i-5p

ORCID Icon, , , , , , , , ORCID Icon, ORCID Icon, & show all
Pages 10539-10554 | Published online: 16 Dec 2019

References

  • Andratschke N, Grosu AL, Molls M, Nieder C. Perspectives in the treatment of malignant gliomas in adults. Anticancer Res. 2001;21(5):3541–3550.11848521
  • Meyer MA. Malignant gliomas in adults. N Engl J Med. 2008;359(17):1850 author reply 1850.
  • Wen PY, Kesari S. Malignant gliomas in adults. N Engl J Med. 2008;359(5):492–507. doi:10.1056/NEJMra070812618669428
  • Leloir LF. The enzymatic transformation of uridine diphosphate glucose into a galactose derivative. Arch Biochem Biophys. 1951;33(2):186–190. doi:10.1016/0003-9861(51)90096-314885999
  • Thoden JB, Wohlers TM, Fridovich-Keil JL, et al. Human UDP-galactose 4-epimerase. Accommodation of UDP-N-acetylglucosamine within the active site. J Biol Chem. 2001;276(18):15131–15136. doi:10.1074/jbc.M10022020011279032
  • da Silveira Mitteldorf CA, de Sousa-canavez JM, Leite KRM, et al. FN1, GALE, MET, and QPCT overexpression in papillary thyroid carcinoma: molecular analysis using frozen tissue and routine fine-needle aspiration biopsy samples. Diagn Cytopathol. 2011;39(8):556–561. doi:10.1002/dc.v39.820607686
  • Macfarlane LA, Murphy PR. MicroRNA: biogenesis, function and role in cancer. Curr Genomics. 2010;11(7):537–561. doi:10.2174/13892021079317589521532838
  • Liu S, Yin F, Zhang J, et al. Regulatory roles of miRNA in the human neural stem cell transformation to glioma stem cells. J Cell Biochem. 2014;115(8):1368–1380. doi:10.1002/jcb.v115.824519663
  • Zhao Z, Tan X, Zhao A, et al. microRNA-214-mediated UBC9 expression in glioma. BMB Rep. 2012;45(11):641–646. doi:10.5483/BMBRep.2012.45.11.09723187003
  • Ma L, Young J, Prabhala H, et al. miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol. 2010;12(3):247–256. doi:10.1038/ncb202420173740
  • Dews M, Homayouni A, Yu D, et al. Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet. 2006;38(9):1060–1065. doi:10.1038/ng185516878133
  • Zhang R, Pang B, Xin T, et al. Plasma miR-221/222 family as novel descriptive and prognostic biomarkers for glioma. Mol Neurobiol. 2016;53(3):1452–1460. doi:10.1007/s12035-014-9079-925636684
  • Gabriely G, Yi M, Narayan RS. et al. Human glioma growth is controlled by microRNA-10b. Cancer Res. 2011;71(10):3563–3572. doi:10.1158/0008-5472.CAN-10-356821471404
  • Boyerinas B, Park SM, Hau A, et al. The role of let-7 in cell differentiation and cancer. Endocr Relat Cancer. 2010;17(1):F19–36. doi:10.1677/ERC-09-018419779035
  • Hertel J, Bartschat S, Wintsche A, Otto C. Evolution of the let-7 microRNA family. RNA Biol. 2012;9(3):231–241. doi:10.4161/rna.1897422617875
  • Ali S, Saleh H, Sethi S, et al. MicroRNA profiling of diagnostic needle aspirates from patients with pancreatic cancer. Br J Cancer. 2012;107(8):1354–1360. doi:10.1038/bjc.2012.38322929886
  • Akao Y, Nakagawa Y, Naoe T. let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biol Pharm Bull. 2006;29(5):903–906. doi:10.1248/bpb.29.90316651716
  • Takamizawa J, Konishi H, Yanagisawa K, et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res. 2004;64(11):3753–3756. doi:10.1158/0008-5472.CAN-04-063715172979
  • Yu F, Yao H, Zhu P, et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell. 2007;131(6):1109–1123. doi:10.1016/j.cell.2007.10.05418083101
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–674. doi:10.1016/j.cell.2011.02.01321376230
  • McCorvie TJ, Timson DJ. In silico prediction of the effects of mutations in the human UDP-galactose 4ʹ-epimerase gene: towards a predictive framework for type III galactosemia. Gene. 2013;524(2):95–104. doi:10.1016/j.gene.2013.04.06123644136
  • Schulz JM, Ross KL, Malmstrom K, et al. Mediators of galactose sensitivity in UDP-galactose 4ʹ-epimerase-impaired mammalian cells. J Biol Chem. 2005;280(14):13493–13502. doi:10.1074/jbc.M41404520015701638
  • Wasilenko J, Fridovich-Keil JL. Relationship between UDP-galactose 4ʹ-epimerase activity and galactose sensitivity in yeast. J Biol Chem. 2006;281(13):8443–8449. doi:10.1074/jbc.M60077820016452467
  • Bang YL, Nguyen TT, Trinh TT, et al. Functional analysis of mutations in UDP-galactose-4-epimerase (GALE) associated with galactosemia in Korean patients using mammalian GALE-null cells. FEBS J. 2009;276(7):1952–1961. doi:10.1111/j.1742-4658.2009.06922.x19250319
  • Brahma A, Banerjee N, Bhattacharyya D. UDP-galactose 4-epimerase from Kluyveromyces fragilis–catalytic sites of the homodimeric enzyme are functional and regulated. FEBS J. 2009;276(22):6725–6740. doi:10.1111/j.1742-4658.2009.07386.x19843183
  • Brahma A, Bhattacharyya D. UDP-galactose 4-epimerase from Kluyveromyces fragilis: existence of subunit independent functional site. FEBS Lett. 2004;577(1–2):27–34. doi:10.1016/j.febslet.2004.09.05615527757
  • Nayar S. UDP-galactose 4-epimerase from Kluyveromyces fragilis: analysis of its hysteretic behavior during catalysis. Biochemistry. 2004;43(31):10212–10223. doi:10.1021/bi049569t15287749
  • Pey AL, Padín-Gonzalez E, Mesa-Torres N, Timson DJ. The metastability of human UDP-galactose 4ʹ-epimerase (GALE) is increased by variants associated with type III galactosemia but decreased by substrate and cofactor binding. Arch Biochem Biophys. 2014;562:103–114. doi:10.1016/j.abb.2014.07.03025150110
  • Timson DJ. Functional analysis of disease-causing mutations in human UDP-galactose 4-epimerase. FEBS J. 2005;272(23):6170–6177. doi:10.1111/j.1742-4658.2005.05017.x16302980
  • Thoden JB, Wohlers TM, Fridovich-Keil JL, et al. Molecular basis for severe epimerase deficiency galactosemia. X-ray structure of the human V94m-substituted UDP-galactose 4-epimerase. J Biol Chem. 2001;276(23):20617–20623. doi:10.1074/jbc.M10130420011279193
  • Wohlers TM, Christacos NC, Harreman MT, et al. Identification and characterization of a mutation, in the human UDP-galactose-4-epimerase gene, associated with generalized epimerase-deficiency galactosemia. Am J Hum Genet. 1999;64(2):462–470. doi:10.1086/3022639973283
  • Timson DJ. The molecular basis of galactosemia - Past, present and future. Gene. 2016;589(2):133–141. doi:10.1016/j.gene.2015.06.07726143117
  • McCorvie TJ, Wasilenko J, Liu Y, et al. In vivo and in vitro function of human UDP-galactose 4ʹ-epimerase variants. Biochimie. 2011;93(10):1747–1754. doi:10.1016/j.biochi.2011.06.00921703329
  • Que T, Song Y, Liu Z, et al. Decreased miRNA-637 is an unfavorable prognosis marker and promotes glioma cell growth, migration and invasion via direct targeting Akt1. Oncogene. 2015;34(38):4952–4963. doi:10.1038/onc.2014.41925597410
  • Shi Y, Chen C, Zhang X, et al. Primate-specific miR-663 functions as a tumor suppressor by targeting PIK3CD and predicts the prognosis of human glioblastoma. Clin Cancer Res. 2014;20(7):1803–1813. doi:10.1158/1078-0432.CCR-13-228424523440
  • Tu Y, Gao X, Li G, et al. MicroRNA-218 inhibits glioma invasion, migration, proliferation, and cancer stem-like cell self-renewal by targeting the polycomb group gene Bmi1. Cancer Res. 2013;73(19):6046–6055. doi:10.1158/0008-5472.CAN-13-035823950210
  • Godlewski J, Nowicki MO, Bronisz A, et al. Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res. 2008;68(22):9125–9130. doi:10.1158/0008-5472.CAN-08-262919010882
  • Li Y, Guessous F, Zhang Y, et al. MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes. Cancer Res. 2009;69(19):7569–7576. doi:10.1158/0008-5472.CAN-09-052919773441