76
Views
4
CrossRef citations to date
0
Altmetric
Original Research

Deficient Regulatory Innate Lymphoid Cells and Differential Expression of miRNAs in Acute Myeloid Leukemia Quantified by Next Generation Sequence

ORCID Icon, , ORCID Icon, , , , & show all
Pages 10969-10982 | Published online: 03 Jan 2020

References

  • Spits H, Artis D, Colonna M, et al. Innate lymphoid cells -a proposal for uniform nomenclature. Nat Rev Immunol. 2013;13(2 ):145–149. doi:10.1038/nri336523348417
  • Spits H, Cupedo T. Innate lymphoid cells: emerging insights in development, lineage relationships, and function. Annu Rev Immunol. 2012;30(1 ):647–675. doi:10.1146/annurev-immunol-020711-07505322224763
  • Walker JA, Barlow JL, McKenzie ANJ. Innate lymphoid cells -how did we miss them? Nat Rev Immunol. 2013;13(2 ):75–87. doi:10.1038/nri334923292121
  • Bernink JH, Peters CP, Munneke M, et al. Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues. Nat Immunol. 2013;14(3 ):221–229. doi:10.1038/ni.253423334791
  • Mjösberg JM, Trifari S, Crellin NK, et al. Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nat Immunol. 2011;12:1055–1062. doi:10.1038/ni.210421909091
  • Hoorweg K, Peters CP, Cornelissen F, et al. Functional differences between human NKp44(−) and NKp44(+) RORC(+) innate lymphoid cells. Front Immunol. 2012;3:72. doi:10.3389/fimmu.2012.0007222566953
  • Tang Q, Ahn Y-O, Southern P, Blazar BR, Miller JS, Verneris MR. Development of IL-22–producing NK lineage cells from umbilical cord blood hematopoietic stem cells in the absence of secondary lymphoid tissue. Blood. 2011;117(15 ):4052–4055. doi:10.1182/blood-2010-09-30308121310921
  • Borrego F, Masilamani M, Kabat J, Sanni TB, Coligan JE. The cell biology of the human natural killer cell CD94/NKG2A inhibitory receptor. Mol Immunol. 2005;42(4 ):485–488. doi:10.1016/j.molimm.2004.07.03115607803
  • Montaldo E, Vacca P, Vitale C, et al. Human innate lymphoid cells. Immunol Lett. 2016;179(Supplement C ):2–8. doi:10.1016/j.imlet.2016.01.00726844414
  • Lim AI, Li Y, Lopez-Lastra S, et al. Systemic human ILC precursors provide a substrate for tissue ILC differentiation. Cell. 2017;168(6 ):1086–100.e10. doi:10.1016/j.cell.2017.02.02128283063
  • Bianca Bennstein S, Riccarda Manser A, Weinhold S, Scherenschlich N, Uhrberg M. OMIP-055: characterization of human innate lymphoid cells from neonatal and peripheral blood. Cytometry A. 2019. doi:10.1002/cyto.a.23741
  • Wang S, Xia P, Chen Y, et al. Regulatory innate lymphoid cells control innate intestinal inflammation. Cell. 2017;171(1 ):201–216. doi:10.1016/j.cell.2017.07.02728844693
  • Zeng B, Shi S, Liu J, Xing F. Commentary: regulatory innate lymphoid cells control innate intestinal inflammation. Front Immunol 2018;9:1522. doi:10.3389/fimmu.2018.0152230013571
  • Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell. 2008;133(5 ):775–787. doi:10.1016/j.cell.2008.05.00918510923
  • Gury-BenAri M, Thaiss CA, Serafini N, et al. The spectrum and regulatory landscape of intestinal innate lymphoid cells are shaped by the microbiome. Cell. 2016;166(5 ):1231–1246.e13. doi:10.1016/j.cell.2016.07.043.27545347
  • Robinette ML, Fuchs A, Cortez VS, et al. Transcriptional programs define molecular characteristics of innate lymphoid cell classes and subsets. Nat Immunol. 2015;16(3 ):306–317. doi:10.1038/ni.3094.25621825
  • Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2 ):281–297. doi:10.1016/S0092-8674(04)00045-514744438
  • Baltimore D, Boldin MP, O’connell RM, Rao DS, Taganov KD. MicroRNAs: new regulators of immune cell development and function. Nat Immunol. 2008;9(8 ):839–845. doi:10.1038/ni.f.20918645592
  • Vishnoi A, Rani S. MiRNA biogenesis and regulation of diseases: an overview. Methods Mol Biol. 2017;1509:1–10.27826912
  • Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 2017;16(3 ):203–222. doi:10.1038/nrd.2016.246.28209991
  • Wallace JA, O’Connell RM. MicroRNAs and acute myeloid leukemia: therapeutic implications and emerging concepts. Blood. 2017;130(11 ):1290–1301. doi:10.1182/blood-2016-10-69769828751524
  • Trino S, Lamorte D, Caivano A, et al. MicroRNAs as new biomarkers for diagnosis and prognosis, and as potential therapeutic targets in acute myeloid leukemia. Int J Mol Sci. 2018;19(2 ):460. doi:10.3390/ijms19020460
  • Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20 ):2391–2405. doi:10.1182/blood-2016-03-643544.27069254
  • O’Donnell MR, Tallman MS, Abboud CN, et al. Acute myeloid leukemia, version 3.2017, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2017;15(7 ):926–957. doi:10.6004/jnccn.2017.011628687581
  • Steensma DP, Bejar R, Jaiswal S, et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood. 2015;126(1 ):9–16. doi:10.1182/blood-2015-03-63174725931582
  • Bowman RL, Busque L, Levine RL. Clonal hematopoiesis and evolution to hematopoietic malignancies. Cell Stem Cell. 2018;22(2 ):157–170. doi:10.1016/j.stem.2018.01.01129395053
  • Young AL, Challen GA, Birmann BM, Druley TE. Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults. Nat Commun. 2016;7:12484. doi:10.1038/ncomms1248427546487
  • Wang M, Zhang C, Tian T, et al. Increased regulatory T cells in peripheral blood of acute myeloid leukemia patients rely on tumor necrosis factor (TNF)-α-TNF receptor-2 pathway. Front Immunol. 2018;9:1274. doi:10.3389/fimmu.2018.01274.29922294
  • Sander FE, Nilsson M, Rydström A, et al. Role of regulatory T cells in acute myeloid leukemia patients undergoing relapse-preventive immunotherapy. Cancer Immunol Immunother. 2017;66(11 ):1473–1484. doi:10.1007/s00262-017-2040-9.28721449
  • Yang W, Xu Y. Clinical significance of treg cell frequency in acute myeloid leukemia. Int J Hematol. 2013;98(5 ):558–562. doi:10.1007/s12185-013-1436-3.24142765
  • Han Y, Dong Y, Yang Q, et al. Acute myeloid leukemia cells express ICOS ligand to promote the expansion of regulatory T cells. Front Immunol. 2018;9:2227. doi:10.3389/fimmu.2018.02227.30319662
  • Williams P, Basu S, Garcia-Manero G, et al. The distribution of T-cell subsets and the expression of immune checkpoint receptors and ligands in patients with newly diagnosed and relapsed acute myeloid leukemia. Cancer. 2018;125(9 ):1470–1481.”. doi:10.1002/cncr.31896
  • Knaus HA, Berglund S, Hackl H, et al. Signatures of CD8þ T cell dysfunction in AML patients and their reversibility with response to chemotherapy. JCI Insight. 2018;3:pii: 120974. doi:10.1172/jci.insight.120974
  • Ustun C, Miller JS, Munn DH, Weisdorf DJ, Blazar BR. Regulatory T cells in acute myelogenous leukemia: is it time for immunomodulation? Blood. 2011;118(19 ):5084–5095. doi:10.1182/blood-2011-07-36581721881045
  • Bjorklund AK, Forkel M, Picelli S, et al. The heterogeneity of human CD127+ innate lymphoid cells revealed by single-cell RNA sequencing. Nat Immunol. 2016;17(4 ):451–460. doi:10.1038/ni.336826878113
  • Szczepanski MJ, Szajnik M, Czystowska M, et al. Increased frequency and suppression by regulatory T cells in patients with acute myelogenous leukemia. Clin Cancer Res. 2009;15(10 ):3325–3332. doi:10.1158/1078-0432.CCR-08-301019417016
  • Shenghui Z, Yixiang H, Jianbo W, et al. Elevated frequencies of CD4(+) CD25(+) CD127lo regulatory T cells is associated to poor prognosis in patients with acute myeloid leukemia. Int J Cancer. 2011;129(6 ):1373–1381. doi:10.1002/ijc.2579121105040
  • Pandita A, Ramadas P, Poudel A, et al. Differential expression of miRNAs in acute myeloid leukemia quantified by Nextgen sequencing of whole blood samples. PLoS One. 2019;14(3 ):e0213078. doi:10.1371/journal.pone.021307830893351
  • Havelange V, Ranganathan P, Geyer S, et al. Implications of the miR-10 family in chemotherapy response of NPM1-mutated AML. Blood. 2014;123(15 ):2412–2415. doi:10.1182/blood-2013-10-532374.24596420
  • Bi L, Sun L, Jin Z, Zhang S, Shen Z. MicroRNA-10a/b are regulators of myeloid differentiation and acute myeloid leukemia. Oncol Lett. 2018;15(4 ):5611–5619. doi:10.3892/ol.2018.8050.29552198
  • Fu L, Qi J, Gao X, et al. High expression of miR-338 is associated with poor prognosis in acute myeloid leukemia undergoing chemotherapy. J Cell Physiol. 2019:1–9. doi:10.1002/jcp.28676
  • Marcucci G, Mrozek K, Radmacher MD, Garzon R, Bloomfield CD. The prognostic and functional role of microRNAs in acute myeloid leukemia. Blood. 2011;117(4 ):1121–1129. doi:10.1182/blood-2010-09-191312.21045193
  • Weng H, Lal K, Yang FF, Chen J. The pathological role and prognostic impact of miR-181 in acute myeloid leukemia. Cancer Genetics. 2015;208(5 ):225–229. doi:10.1016/j.cancergen.2014.12.006.25686674
  • Su R, Lin H, Zhang X, et al. MiR-181 family: regulators of myeloid differentiation and acute myeloid leukemia as well as potential therapeutic targets. Oncogene. 2015;34(25 ):3226–3239. doi:10.1038/onc.2014.274.25174404
  • Favreau AJ, McGlauflin RE, Duarte CW, Sathyanarayana P. miR-199b, a novel tumor suppressor miRNA in acute myeloid leukemia with prognostic implications. Experimental Hematology & Oncology. 2015;5(1 ):4. doi:10.1186/s40164-016-0033-626848406
  • Trissal MC, DeMoya RA, Schmidt AP, Link DC. MicroRNA-223 regulates granulopoiesis but is not required for HSC maintenance in mice. PLoS One. 2015;10(3 ):e0119304. doi:10.1371/journal.pone.0119304.25793640