120
Views
4
CrossRef citations to date
0
Altmetric
Review

Effective Immunosurveillance After Allogeneic Hematopoietic Stem Cell Transplantation in Acute Myeloid Leukemia

&
Pages 7411-7427 | Published online: 24 Sep 2021

References

  • PasswegJR, BaldomeroH, BaderP, et al.; for the European Society for Blood and Marrow Transplantation (EBMT). Hematopoietic stem cell transplantation in Europe 2014: more than 40 000 transplants annually. Bone Marrow Transplant. 2016;51(6):786–792. doi:10.1038/bmt.2016.20.26901709
  • CornelissenJJ, GratwohlA, SchlenkRF, et al. The European LeukemiaNet AML Working Party consensus statement on allogeneic HSCT for patients with AML in remission: an integrated-risk adapted approach. Nat Rev Clin Oncol. 2012;9(10):579–590. doi:10.1038/nrclinonc.2012.15022949046
  • KorethJ, SchlenkR, KopeckyKJ, et al. Allogeneic stem cell transplantation for acute myeloid leukemia in first complete remission: systematic review and meta-analysis of prospective clinical trials. JAMA. 2009;301(22):2349–2361. doi:10.1001/jama.2009.81319509382
  • PasswegJR, BaldomeroH, BaderP, et al.; for the European Society for Blood and Marrow Transplantation (EBMT). Is the use of unrelated donor transplantation leveling off in Europe? The 2016 European Society for Blood and Marrow Transplant activity survey report. Bone Marrow Transplant. 2018;53(9):1139–1148. doi:10.1038/s41409-018-0153-1.29540849
  • DuarteRF, LabopinM, BaderP, et al.; for the European Society for Blood and Marrow Transplantation (EBMT). Indications for haematopoietic stem cell transplantation for haematological diseases, solid tumours and immune disorders: current practice in Europe, 2019. Bone Marrow Transplant. 2019;54(10):1525–1552. doi:10.1038/s41409-019-0516-2.30953028
  • DöhnerH, EsteyE, GrimwadeD, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129(4):424–447. doi:10.1182/blood-2016-08-73319627895058
  • StölzelF, PlatzbeckerU, MohrB, et al. Early intervention with allogeneic hematopoietic cell transplantation during chemotherapy-induced aplasia in patients with high-risk acute myeloid leukemia. Leukemia. 2013;27(10):2068–2072. doi:10.1038/leu.2013.14223648670
  • MiddekeJM, HerbstR, ParmentierS, et al.; for the Study Alliance Leukemia (SAL). Clofarabine salvage therapy before allogeneic hematopoietic stem cell transplantation in patients with relapsed or refractory AML: results of the BRIDGE trial. Leukemia. 2016;30(2):261–267. doi:10.1038/leu.2015.226.26283567
  • de LimaM, PorterDL, BattiwallaM, et al. Proceedings from the National Cancer Institute’s Second International Workshop on the biology, prevention, and treatment of relapse after hematopoietic stem cell transplantation: part III. Prevention and treatment of relapse after allogeneic transplantation. Biol Blood Marrow Transplant. 2014;20(1):4–13. doi:10.1016/j.bbmt.2013.08.01224018392
  • HorowitzM, SchreiberH, ElderA, et al. Epidemiology and biology of relapse after stem cell transplantation. Bone Marrow Transplant. 2018;53(11):1379–1389. doi:10.1038/s41409-018-0171-z29670211
  • BejanyanN, WeisdorfDJ, LoganBR, et al. Survival of patients with acute myeloid leukemia relapsing after allogeneic hematopoietic cell transplantation: a center for international blood and marrow transplant research study. Biol Blood Marrow Transplant. 2015;21(3):454–459. doi:10.1016/j.bbmt.2014.11.00725460355
  • SchmidC, LabopinM, NaglerA, et al. Treatment, risk factors, and outcome of adults with relapsed AML after reduced intensity conditioning for allogeneic stem cell transplantation. Blood. 2012;119(6):1599–1606. doi:10.1182/blood-2011-08-37584022167752
  • SchmidC, LabopinM, NaglerA, et al. Donor lymphocyte infusion in the treatment of first hematological relapse after allogeneic stem-cell transplantation in adults with acute myeloid leukemia: a retrospective risk factors analysis and comparison with other strategies by the EBMT acute leukemia working party. J Clin Oncol. 2007;25(31):4938–4945. doi:10.1200/JCO.2007.11.605317909197
  • ChristopeitM, KussO, FinkeJ, et al. Second allograft for hematologic relapse of acute leukemia after first allogeneic stem-cell transplantation from related and unrelated donors: the role of donor change. J Clin Oncol. 2013;31(26):3259–3271. doi:10.1200/JCO.2012.44.796123918951
  • LeeCJ, SavaniBN, MohtyM, et al. Post-remission strategies for the prevention of relapse following allogeneic hematopoietic cell transplantation for high-risk acute myeloid leukemia: expert review from the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation. Bone Marrow Transplant. 2019;54(4):519–530. doi:10.1038/s41409-018-0286-230104717
  • RautenbergC, GermingU, HaasR, KobbeG, SchroederT. Relapse of acute myeloid leukemia after allogeneic stem cell transplantation: prevention, detection, and treatment. Int J Mol Sci. 2019;20(1):228. doi:10.3390/ijms20010228
  • HorowitzMM, GaleR, SondelPM, et al. Graft-versus-leukemia reactions after bone marrow transplantation. Blood. 1990;75:555–562. doi:10.1182/blood.V75.3.555.bloodjournal7535552297567
  • WeidenPL, SullivanKM, FlournoyN, StorbR, ThomasED. Antileukemic effect of chronic graft-versus-host disease. N Engl J Med. 1981;304(25):1529–1533. doi:10.1056/NEJM1981061830425077015133
  • ButturiniA, BortinM, GaleR. Graft-versus-leukemia following bone marrow transplantation. Bone Marrow Transplant. 1987;2(3):233–242.3332173
  • BornhäuserM, KienastJ, TrenschelR, et al. Reduced-intensity conditioning versus standard conditioning before allogeneic haemopoietic cell transplantation in patients with acute myeloid leukaemia in first complete remission: a prospective, open-label randomised phase 3 trial. Lancet Oncol. 2012;13(10):1035–1044. doi:10.1016/S1470-2045(12)70349-222959335
  • BeelenDW, TrenschelR, StelljesM, et al. Treosulfan or busulfan plus fludarabine as conditioning treatment before allogeneic haemopoietic stem cell transplantation for older patients with acute myeloid leukaemia or myelodysplastic syndrome (MC-FludT.14/L): a randomised, non-inferiority, phase 3 trial. Lancet Haematol. 2020;7(1):e28–e39. doi:10.1016/S2352-3026(19)30157-731606445
  • RingdénO, BoumendilA, LabopinM, et al. Outcome of allogeneic hematopoietic stem cell transplantation in patients age >69 years with acute myelogenous leukemia: on behalf of the acute leukemia working party of the European society for blood and marrow transplantation. Biol Blood Marrow Transplant. 2019;25(10):1975–1983. doi:10.1016/j.bbmt.2019.05.03731181255
  • LiJ-M, GiverCR, LuY, HossainMS, AkhtariM, WallerK. Separating graft-versus-leukemia from graft-versus-host disease in allogeneic hematopoietic stem cell transplantation. Immunotherapy. 2010;34:599–621.
  • WarrenEH, DeegHJ. Dissecting graft-versus-leukemia from graft-versus-host-disease using novel strategies: dissecting GVL from GVHD. Tissue Antigens. 2013;81(4):183–193. doi:10.1111/tan.1209023510414
  • NegrinRS. Graft-versus-host disease versus graft-versus-leukemia. Hematology. 2015;2015(1):225–230. doi:10.1182/asheducation-2015.1.22526637726
  • ChangY-J, ZhaoX-Y, HuangX-J. Strategies for enhancing and preserving anti-leukemia effects without aggravating graft-versus-host disease. Front Immunol. 2018;9:3041. doi:10.3389/fimmu.2018.0304130619371
  • RobinsonJ, HalliwellJA, HayhurstJD, et al. IMGT/HLA database: allele variant databases. Nucleic Acids Res. 2015;43(D1):D423–D431. doi:10.1093/nar/gku116125414341
  • AnasettiC, BeattyPG, StorbR, et al. Effect of HLA incompatibility on graft-versus-host disease, relapse, and survival after marrow transplantation for patients with leukemia or lymphoma. Hum Immunol. 1990;29(2):79–91. doi:10.1016/0198-8859(90)90071-V2249952
  • AyukF, BeelenDW, BornhäuserM, et al. Relative impact of HLA matching and non-HLA donor characteristics on outcomes of allogeneic stem cell transplantation for acute myeloid leukemia and myelodysplastic syndrome. Biol Blood Marrow Transplant. 2018;24(12):2558–2567. doi:10.1016/j.bbmt.2018.06.02629966760
  • PiemonteseS, CiceriF, LabopinM, et al.; on behalf of the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation (EBMT). A comparison between allogeneic stem cell transplantation from unmanipulated haploidentical and unrelated donors in acute leukemia. J Hematol Oncol. 2017;10(1):24. doi:10.1186/s13045-017-0394-2.28103944
  • KasamonYL, LuznikL, LeffellMS, et al. Nonmyeloablative HLA-haploidentical bone marrow transplantation with high-dose posttransplantation cyclophosphamide: effect of HLA disparity on outcome. Biol Blood Marrow Transplant. 2010;16(4):482–489. doi:10.1016/j.bbmt.2009.11.01119925877
  • SolomonSR, AubreyMT, ZhangX, et al. Selecting the best donor for haploidentical transplant: impact of HLA, killer cell immunoglobulin-like receptor genotyping, and other clinical variables. Biol Blood Marrow Transplant. 2018;24(4):789–798. doi:10.1016/j.bbmt.2018.01.01329355721
  • FleischhauerK, ShawBE. HLA-DP in unrelated hematopoietic cell transplantation revisited: challenges and opportunities. Blood. 2017;130(9):1089–1096. doi:10.1182/blood-2017-03-74234628667011
  • FleischhauerK, ShawBE, GooleyT, et al. Effect of T-cell-epitope matching at HLA-DPB1 in recipients of unrelated-donor haemopoietic-cell transplantation: a retrospective study. Lancet Oncol. 2012;13(4):366–374. doi:10.1016/S1470-2045(12)70004-922340965
  • PetersdorfEW, CarringtonM, O’hUiginC, et al. Role of HLA-B exon 1 in graft-versus-host disease after unrelated haemopoietic cell transplantation: a retrospective cohort study. Lancet Haematol. 2020;7(1):e50–e60. doi:10.1016/S2352-3026(19)30208-X31669248
  • KollmanC, SpellmanSR, ZhangM-J, et al. The effect of donor characteristics on survival after unrelated donor transplantation for hematologic malignancy. Blood. 2016;127(2):260–267. doi:10.1182/blood-2015-08-66382326527675
  • KollmanC, HoweCWS, AnasettiC, et al. Donor characteristics as risk factors in recipients after transplantation of bone marrow from unrelated donors: the effect of donor age. Blood. 2001;98(7):2043–2051. doi:10.1182/blood.V98.7.204311567988
  • CanaaniJ, SavaniBN, LabopinM, et al. Donor age determines outcome in acute leukemia patients over 40 undergoing haploidentical hematopoietic cell transplantation. Am J Hematol. 2018;93(2):246–253. doi:10.1002/ajh.2496329114918
  • CiureaSO, ShahMV, SalibaRM, et al. Haploidentical transplantation for older patients with acute myeloid leukemia and myelodysplastic syndrome. Biol Blood Marrow Transplant. 2018;24(6):1232–1236. doi:10.1016/j.bbmt.2017.09.00528918304
  • RezvaniAR, StorerBE, GuthrieKA, et al. Impact of donor age on outcome after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2015;21(1):105–112. doi:10.1016/j.bbmt.2014.09.02125278458
  • MariottiJ, RaiolaAM, EvangelistaA, et al. Impact of donor age and kinship on clinical outcomes after T-cell–replete haploidentical transplantation with PT-Cy. Blood Adv. 2020;4(16):3900–3912. doi:10.1182/bloodadvances.202000162032813875
  • SternM, BrandR, de WitteT, et al. Female-versus-male alloreactivity as a model for minor histocompatibility antigens in hematopoietic stem cell transplantation. Am J Transplant. 2008;8(10):2149–2157. doi:10.1111/j.1600-6143.2008.02374.x18828773
  • KongtimP, Di StasiA, RondonG, et al. Can a female donor for a male recipient decrease the relapse rate for patients with acute myeloid leukemia treated with allogeneic hematopoietic stem cell transplantation?Biol Blood Marrow Transplant. 2015;21(4):713–719. doi:10.1016/j.bbmt.2014.12.01825540936
  • PasswegJR, BaldomeroH, BaderP, et al.; for the European Society for Blood and Marrow Transplantation (EBMT). Hematopoietic SCT in Europe 2013: recent trends in the use of alternative donors showing more haploidentical donors but fewer cord blood transplants. Bone Marrow Transplant. 2015;50(4):476–482. doi:10.1038/bmt.2014.312.25642761
  • AnasettiC, LoganBR, LeeSJ, et al. Peripheral-blood stem cells versus bone marrow from unrelated donors. N Engl J Med. 2012;367(16):1487–1496. doi:10.1056/NEJMoa120351723075175
  • ByrneM, SavaniBN, MohtyM, NaglerA. Peripheral blood stem cell versus bone marrow transplantation: a perspective from the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation. Exp Hematol. 2016;44(7):567–573. doi:10.1016/j.exphem.2016.04.00527106798
  • SavaniBN, LabopinM, BlaiseD, et al. Peripheral blood stem cell graft compared to bone marrow after reduced intensity conditioning regimens for acute leukemia: a report from the ALWP of the EBMT. Haematologica. 2016;101(2):256–262. doi:10.3324/haematol.2015.13569926565001
  • TeipelR, OelschlägelU, WetzkoK, et al. Differences in cellular composition of peripheral blood stem cell grafts from healthy stem cell donors mobilized with either Granulocyte Colony-Stimulating Factor (G-CSF) alone or G-CSF and plerixafor. Biol Blood Marrow Transplant. 2018;24(11):2171–2177. doi:10.1016/j.bbmt.2018.06.02329935214
  • SchroederMA, RettigMP, LopezS, et al. Mobilization of allogeneic peripheral blood stem cell donors with intravenous plerixafor mobilizes a unique graft. Blood. 2017;129(19):2680–2692. doi:10.1182/blood-2016-09-73972228292947
  • FisherSA, LamikanraA, DoréeC, et al. Increased regulatory T cell graft content is associated with improved outcome in haematopoietic stem cell transplantation: a systematic review. Br J Haematol. 2017;176(3):448–463. doi:10.1111/bjh.1443328094847
  • EdingerM, HoffmannP, ErmannJ, et al. CD4+CD25+ regulatory T cells preserve graft-versus-tumor activity while inhibiting graft-versus-host disease after bone marrow transplantation. Nat Med. 2003;9(9):1144–1150. doi:10.1038/nm91512925844
  • SaraceniF, Shem-TovN, OlivieriA, NaglerA. Mobilized peripheral blood grafts include more than hematopoietic stem cells: the immunological perspective. Bone Marrow Transplant. 2015;50(7):886–891. doi:10.1038/bmt.2014.33025665044
  • DuvalM, KleinJP, HeW, et al. Hematopoietic stem-cell transplantation for acute leukemia in relapse or primary induction failure. J Clin Oncol. 2010;28(23):3730–3738. doi:10.1200/JCO.2010.28.885220625136
  • WalterRB, GyurkoczaB, StorerBE, et al. Comparison of minimal residual disease as outcome predictor for AML patients in first complete remission undergoing myeloablative or nonmyeloablative allogeneic hematopoietic cell transplantation. Leukemia. 2015;29(1):137–144. doi:10.1038/leu.2014.17324888275
  • ArakiD, WoodBL, OthusM, et al. Allogeneic hematopoietic cell transplantation for acute myeloid leukemia: time to move toward a minimal residual disease–based definition of complete remission?J Clin Oncol. 2016;34(4):329–336. doi:10.1200/JCO.2015.63.382626668349
  • ShayegiN, KramerM, BornhäuserM, et al. The level of residual disease based on mutant NPM1 is an independent prognostic factor for relapse and survival in AML. Blood. 2013;122(1):83–92. doi:10.1182/blood-2012-10-46174923656730
  • NorkinM, KatragaddaL, ZouF, et al. Minimal residual disease by either flow cytometry or cytogenetics prior to an allogeneic hematopoietic stem cell transplant is associated with poor outcome in acute myeloid leukemia. Blood Cancer J. 2017;7(12):634. doi:10.1038/s41408-017-0007-x29176662
  • Jongen-LavrencicM, GrobT, HanekampD, et al. Molecular minimal residual disease in acute myeloid leukemia. N Engl J Med. 2018;378(13):1189–1199. doi:10.1056/NEJMoa171686329601269
  • Rodríguez-ArbolíE, LabopinM, TischerJ, et al. FLAMSA-based reduced-intensity conditioning versus myeloablative conditioning in younger patients with relapsed/refractory acute myeloid leukemia with active disease at the time of allogeneic stem cell transplantation: an analysis from the acute leukemia working party of the European Society For Blood And Marrow Transplantation. Biol Blood Marrow Transplant. 2020;26(11):2165–2173. doi:10.1016/j.bbmt.2020.07.02032717436
  • UstunC, CourvilleEL, DeForT, et al. Myeloablative, but not reduced-intensity, conditioning overcomes the negative effect of flow-cytometric evidence of leukemia in acute myeloid leukemia. Biol Blood Marrow Transplant. 2016;22(4):669–675. doi:10.1016/j.bbmt.2015.10.02426551635
  • LintV. The combined effect of total body irradiation (TBI) and cyclosporin A (CyA) on the risk of relapse in patients with acute myeloid leukaemia undergoing allogeneic bone marrow transplantation: effect of TBI and CyA on post-transplant relapse in AML. Br J Haematol. 2000;108(1):99–104. doi:10.1046/j.1365-2141.2000.01809.x10651732
  • SchmidC, SchleuningM, LedderoseG, TischerJ, KolbH-J. Sequential regimen of chemotherapy, reduced-intensity conditioning for allogeneic stem-cell transplantation, and prophylactic donor lymphocyte transfusion in high-risk acute myeloid leukemia and myelodysplastic syndrome. J Clin Oncol. 2005;23(24):5675–5687. doi:10.1200/JCO.2005.07.06116110027
  • SteckelNK, GrothC, MikeschJ-H, et al. High-dose melphalan-based sequential conditioning chemotherapy followed by allogeneic haematopoietic stem cell transplantation in adult patients with relapsed or refractory acute myeloid leukaemia. Br J Haematol. 2018;180(6):840–853. doi:10.1111/bjh.1513729468631
  • DoppelhammerM, FraccaroliA, PrevalsekD, et al. Comparable outcome after haploidentical and HLA-matched allogeneic stem cell transplantation for high-risk acute myeloid leukemia following sequential conditioning—a matched pair analysis. Ann Hematol. 2019;98(3):753–762. doi:10.1007/s00277-019-03593-230617644
  • StölzelF. From remission to cure: bypass or detour?Br J Haematol. 2018;180(3):317–318. doi:10.1111/bjh.1503129193005
  • CliftR, BucknerC, AppelbaumF, et al. Allogeneic marrow transplantation in patients with acute myeloid leukemia in first remission: a randomized trial of two irradiation regimens [see comments]. Blood. 1990;76(9):1867–1871. doi:10.1182/blood.V76.9.1867.18672224134
  • AoudjhaneM, LabopinM, GorinN, et al. Comparative outcome of reduced intensity and myeloablative conditioning regimen in HLA identical sibling allogeneic haematopoietic stem cell transplantation for patients older than 50 years of age with acute myeloblastic leukaemia: a retrospective survey from the Acute Leukemia Working Party (ALWP) of the European group for Blood and Marrow Transplantation (EBMT). Leukemia. 2005;19(12):2304–2312.16193083
  • MartinoR, de WreedeL, FioccoM, et al.; for the Acute Leukemia Working Party the subcommittee for Myelodysplastic Syndromes of the Chronic Malignancies Working Party of the European group for Blood Marrow Transplantation Group (EBMT). Comparison of conditioning regimens of various intensities for allogeneic hematopoietic SCT using HLA-identical sibling donors in AML and MDS with <10% BM blasts: a report from EBMT. Bone Marrow Transplant. 2013;48(6):761–770. doi:10.1038/bmt.2012.236.23208314
  • PasswegJR, BaldomeroH, GratwohlA, et al.; for the European Group for Blood and Marrow Transplantation (EBMT). The EBMT activity survey: 1990–2010. Bone Marrow Transplant. 2012;47(7):906–923. doi:10.1038/bmt.2012.66.22543746
  • LugerSM, RingdénO, ZhangM-J, et al. Similar outcomes using myeloablative vs reduced-intensity allogeneic transplant preparative regimens for AML or MDS. Bone Marrow Transplant. 2012;47(2):203–211. doi:10.1038/bmt.2011.6921441963
  • ScottBL, PasquiniMC, LoganBR, et al. Myeloablative versus reduced-intensity hematopoietic cell transplantation for acute myeloid leukemia and myelodysplastic syndromes. J Clin Oncol. 2017;35(11):1154–1161. doi:10.1200/JCO.2016.70.709128380315
  • ValcárcelD, MartinoR, PiñanaJL, SierraJ. Allogeneic stem cell transplantation after reduced-intensity conditioning for acute myeloid leukaemia: impact of chronic graft-versus-host disease. Curr Opin Oncol. 2009;21:S35–S37.19561412
  • RosenowF, BerkemeierA, KrugU, et al. CD34+ lineage specific donor cell chimerism for the diagnosis and treatment of impending relapse of AML or myelodysplastic syndrome after allo-SCT. Bone Marrow Transplant. 2013;48(8):1070–1076. doi:10.1038/bmt.2013.223376821
  • ZeiserR, BlazarBR. Acute graft-versus-host disease — biologic process, prevention, and therapy. N Engl J Med. 2017;377(22):2167–2179. doi:10.1056/NEJMra160933729171820
  • FerraraJL, LevineJE, ReddyP, HollerE. Graft-versus-host disease. Lancet. 2009;373(9674):1550–1561. doi:10.1016/S0140-6736(09)60237-319282026
  • KolbH-J. Graft-versus-leukemia effects of transplantation and donor lymphocytes. Blood. 2008;112(12):4371–4383. doi:10.1182/blood-2008-03-07797419029455
  • LuznikL, O’DonnellPV, SymonsHJ, et al. HLA-haploidentical bone marrow transplantation for hematologic malignancies using nonmyeloablative conditioning and high-dose, posttransplantation cyclophosphamide. Biol Blood Marrow Transplant. 2008;14(6):641–650. doi:10.1016/j.bbmt.2008.03.00518489989
  • LuznikL, O’DonnellPV, FuchsEJ. Post-transplantation cyclophosphamide for tolerance induction in HLA-haploidentical bone marrow transplantation. Haploidentical Bone Marrow Transplant. 2012;39(6):683–693. doi:10.1053/j.seminoncol.2012.09.005
  • CiureaSO, ZhangM-J, BacigalupoAA, et al. Haploidentical transplant with posttransplant cyclophosphamide vs matched unrelated donor transplant for acute myeloid leukemia. Blood. 2015;126(8):1033–1040. doi:10.1182/blood-2015-04-63983126130705
  • MielcarekM, FurlongT, O’DonnellPV, et al. Posttransplantation cyclophosphamide for prevention of graft-versus-host disease after HLA-matched mobilized blood cell transplantation. Blood. 2016;127(11):1502–1508. doi:10.1182/blood-2015-10-67207126764356
  • RobinsonTM, O’DonnellPV, FuchsEJ, LuznikL. Haploidentical bone marrow and stem cell transplantation: experience with post-transplantation cyclophosphamide. Altern Donor Transplant. 2016;53(2):90–97. doi:10.1053/j.seminhematol.2016.01.005
  • GangulyS, RossDB, Panoskaltsis-MortariA, et al. Donor CD4+ Foxp3+ regulatory T cells are necessary for posttransplantation cyclophosphamide-mediated protection against GVHD in mice. Blood. 2014;124(13):2131–2141. doi:10.1182/blood-2013-10-52587325139358
  • WachsmuthLP, PattersonMT, EckhausMA, VenzonDJ, GressRE, KanakryCG. Posttransplantation cyclophosphamide prevents graft-versus-host disease by inducing alloreactive T cell dysfunction and suppression. J Clin Invest. 2019;129(6):2357–2373. doi:10.1172/JCI12421830913039
  • BlazarBR, MacDonaldKPA, HillGR. Immune regulatory cell infusion for graft-versus-host disease prevention and therapy. Blood. 2018;131(24):2651–2660. doi:10.1182/blood-2017-11-78586529728401
  • BertainaA, RoncaroloMG. Graft engineering and adoptive immunotherapy: new approaches to promote immune tolerance after hematopoietic stem cell transplantation. Front Immunol. 2019;10:13.30728822
  • KanakryCG, Bolaños-MeadeJ, KasamonYL, et al. Low immunosuppressive burden after HLA-matched related or unrelated BMT using posttransplantation cyclophosphamide. Blood. 2017;129(10):1389–1393. doi:10.1182/blood-2016-09-73782528049637
  • McCurdySR, KanakryCG, TsaiH-L, et al. Grade II acute graft-versus-host disease and higher nucleated cell graft dose improve progression-free survival after HLA-haploidentical transplant with post-transplant cyclophosphamide. Biol Blood Marrow Transplant. 2018;24(2):343–352. doi:10.1016/j.bbmt.2017.10.02329055682
  • BlazarBR, MurphyWJ, AbediM. Advances in graft-versus-host disease biology and therapy. Nat Rev Immunol. 2012;12(6):443–458. doi:10.1038/nri321222576252
  • AshRC, HorowitzMM, GaleRP, et al. Bone marrow transplantation from related donors other than HLA-identical siblings: effect of T cell depletion. Bone Marrow Transplant. 1991;7(6):443–452.1873591
  • LocatelliF, MerliP, PagliaraD, et al. Outcome of children with acute leukemia given HLA-haploidentical HSCT after αβ T-cell and B-cell depletion. Blood. 2017;130(5):677–685. doi:10.1182/blood-2017-04-77976928588018
  • MartelliMF, Di IanniM, RuggeriL, et al. HLA-haploidentical transplantation with regulatory and conventional T-cell adoptive immunotherapy prevents acute leukemia relapse. Blood. 2014;124(4):638–644. doi:10.1182/blood-2014-03-56440124923299
  • Di StasiA, TeyS-K, DottiG, et al. Inducible apoptosis as a safety switch for adoptive cell therapy. N Engl J Med. 2011;365(18):1673–1683. doi:10.1056/NEJMoa110615222047558
  • ZhangY-L, ZhuY, XiaoQ, WangL, LiuL, LuoX-H. Cytomegalovirus infection is associated with AML relapse after allo-HSCT: a meta-analysis of observational studies. Ann Hematol. 2019;98(4):1009–1020. doi:10.1007/s00277-018-3585-130666434
  • KwekkeboomJ. Potential beneficial effects of cytomegalovirus infection after transplantation. Front Immunol. 2018;9:11.29416536
  • LjungmanP, BrandR, HoekJ, et al. Donor cytomegalovirus status influences the outcome of allogeneic stem cell transplant: a study by the European Group for Blood and Marrow Transplantation. Clin Infect Dis. 2014;59(4):473–481. doi:10.1093/cid/ciu36424850801
  • HorowitzA, GuethleinLA, Nemat-GorganiN, et al. Regulation of adaptive NK cells and CD8 T cells by HLA-C correlates with allogeneic hematopoietic cell transplantation and with cytomegalovirus reactivation. J Immunol. 2015;195(9):4524. doi:10.4049/jimmunol.140199026416275
  • CesaroS, CrocchioloR, TridelloG, et al. Comparable survival using a CMV-matched or a mismatched donor for CMV+ patients undergoing T-replete haplo-HSCT with PT-Cy for acute leukemia: a study of behalf of the infectious diseases and acute leukemia working parties of the EBMT. Bone Marrow Transplant. 2018;53(4):422–430. doi:10.1038/s41409-017-0016-129330396
  • YewPY, AlachkarH, YamaguchiR, et al. Quantitative characterization of T-cell repertoire in allogeneic hematopoietic stem cell transplant recipients. Bone Marrow Transplant. 2015;50(9):1227–1234. doi:10.1038/bmt.2015.13326052909
  • NovielloM, ManfrediF, RuggieroE, et al. Bone marrow central memory and memory stem T-cell exhaustion in AML patients relapsing after HSCT. Nat Commun. 2019;10(1):1065. doi:10.1038/s41467-019-08871-130911002
  • SchmidC, LabopinM, SchaapN, et al. Prophylactic donor lymphocyte infusion after allogeneic stem cell transplantation in acute leukaemia - a matched pair analysis by the Acute Leukaemia Working Party of EBMT. Br J Haematol. 2019;184(5):782–787. doi:10.1111/bjh.1569130467839
  • BornhauserM, OelschlaegelU, PlatzbeckerU, et al. Monitoring of donor chimerism in sorted CD34+ peripheral blood cells allows the sensitive detection of imminent relapse after allogeneic stem cell transplantation. Haematologica. 2009;94(11):1613–1617. doi:10.3324/haematol.2009.00776519880783
  • GrecoR, OliveiraG, StanghelliniMTL, et al. Improving the safety of cell therapy with the TK-suicide gene. Front Pharmacol. 2015;6. doi:10.3389/fphar.2015.00095
  • AndersonBE, McNiffJ, YanJ, et al. Memory CD4+ T cells do not induce graft-versus-host disease. J Clin Invest. 2003;112(1):101–108. doi:10.1172/JCI1760112840064
  • MufflyL, SheehanK, ArmstrongR, et al. Infusion of donor-derived CD8+ memory T cells for relapse following allogeneic hematopoietic cell transplantation. Blood Adv. 2018;2(6):681–690. doi:10.1182/bloodadvances.201701210429572391
  • GhisoA, RaiolaAM, GualandiF, et al. DLI after haploidentical BMT with post-transplant CY. Bone Marrow Transplant. 2015;50(1):56–61. doi:10.1038/bmt.2014.21725310304
  • SchroederT, RachlisE, BugG, et al. Treatment of acute myeloid leukemia or myelodysplastic syndrome relapse after allogeneic stem cell transplantation with azacitidine and donor lymphocyte infusions—a retrospective multicenter analysis from the German Cooperative Transplant Study Group. Biol Blood Marrow Transplant. 2015;21(4):653–660. doi:10.1016/j.bbmt.2014.12.01625540937
  • RuggeriL, CapanniM, UrbaniE, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science. 2002;295(5562):2097. doi:10.1126/science.106844011896281
  • CooleyS, TrachtenbergE, BergemannTL, et al. Donors with group B KIR haplotypes improve relapse-free survival after unrelated hematopoietic cell transplantation for acute myelogenous leukemia. Blood. 2009;113(3):726–732. doi:10.1182/blood-2008-07-17192618945962
  • MichaelisSU, MezgerM, BornhäuserM, et al. KIR haplotype B donors but not KIR-ligand mismatch result in a reduced incidence of relapse after haploidentical transplantation using reduced intensity conditioning and CD3/CD19-depleted grafts. Ann Hematol. 2014;93(9):1579–1586. doi:10.1007/s00277-014-2084-224771045
  • MancusiA, RuggeriL, UrbaniE, et al. Haploidentical hematopoietic transplantation from KIR ligand–mismatched donors with activating KIRs reduces nonrelapse mortality. Blood. 2015;125(20):3173–3182. doi:10.1182/blood-2014-09-59999325769621
  • LeungW, IyengarR, TurnerV, et al. Determinants of antileukemia effects of allogeneic NK cells. J Immunol. 2004;172(1):644–650. doi:10.4049/jimmunol.172.1.64414688377
  • RuggeriL, MancusiA, CapanniM, et al. Donor natural killer cell allorecognition of missing self in haploidentical hematopoietic transplantation for acute myeloid leukemia: challenging its predictive value. Blood. 2007;110(1):433–440. doi:10.1182/blood-2006-07-03868717371948
  • RuggeriL, VagoL, EikemaD-J, et al. Natural killer cell alloreactivity in HLA-haploidentical hematopoietic transplantation: a study on behalf of the CTIWP of the EBMT. Bone Marrow Transplant. 2021;56(8):1900–1907. doi:10.1038/s41409-021-01259-033767404
  • StrongRK, McFarlandBJ. NKG2D and related immunoreceptors. Adv Protein Chem. 2004;68:281–312. doi:10.1016/S0065-3233(04)68008-915500864
  • PaczullaAM, RothfelderK, RaffelS, et al. Absence of NKG2D ligands defines leukaemia stem cells and mediates their immune evasion. Nature. 2019;572(7768):254–259. doi:10.1038/s41586-019-1410-131316209
  • Sanchez-CorreaB, GayosoI, BerguaJM, et al. Decreased expression of DNAM-1 on NK cells from acute myeloid leukemia patients. Immunol Cell Biol. 2012;90(1):109–115. doi:10.1038/icb.2011.1521383766
  • FauriatC, Just-LandiS, MalletF, et al. Deficient expression of NCR in NK cells from acute myeloid leukemia: evolution during leukemia treatment and impact of leukemia cells in NCRdull phenotype induction. Blood. 2007;109(1):323–330. doi:10.1182/blood-2005-08-02797916940427
  • MathewNR, BaumgartnerF, BraunL, et al. Sorafenib promotes graft-versus-leukemia activity in mice and humans through IL-15 production in FLT3-ITD-mutant leukemia cells. Nat Med. 2018;24(3):282–291. doi:10.1038/nm.448429431743
  • LitjensNHR, van der WagenL, KuballJ, KwekkeboomJ. Potential beneficial effects of cytomegalovirus infection after transplantation. Front Immunol. 2018;9:389. doi:10.3389/fimmu.2018.0038929545802
  • CiureaSO, SchaferJR, BassettR, et al. Phase 1 clinical trial using mbIL21 ex vivo–expanded donor-derived NK cells after haploidentical transplantation. Blood. 2017;130(16):1857–1868. doi:10.1182/blood-2017-05-78565928835441
  • MaggsL, KinsellaF, ChanYLT, et al. The number of CD56dim NK cells in the graft has a major impact on risk of disease relapse following allo-HSCT. Blood Adv. 2017;1(19):1589–1597. doi:10.1182/bloodadvances.201700863129296800
  • SavaniBN, MielkeS, AdamsS, et al. Rapid natural killer cell recovery determines outcome after T-cell-depleted HLA-identical stem cell transplantation in patients with myeloid leukemias but not with acute lymphoblastic leukemia. Leukemia. 2007;21(10):2145–2152. doi:10.1038/sj.leu.240489217673900
  • BugginsAGS, MilojkovicD, ArnoMJ, et al. Microenvironment produced by acute myeloid leukemia cells prevents T cell activation and proliferation by inhibition of NF-κB, c-Myc, and pRb pathways. J Immunol. 2001;167(10):6021–6030. doi:10.4049/jimmunol.167.10.602111698483
  • ColpittsSL, StonierSW, StoklasekTA, et al. Transcriptional regulation of IL-15 expression during hematopoiesis. J Immunol. 2013;191(6):3017–3024. doi:10.4049/jimmunol.130138923966624
  • CieriN, CamisaB, CocchiarellaF, et al. IL-7 and IL-15 instruct the generation of human memory stem T cells from naive precursors. Blood. 2013;121(4):573–584. doi:10.1182/blood-2012-05-43171823160470
  • ThiantS, Yakoub-AghaI, MagroL, et al. Plasma levels of IL-7 and IL-15 in the first month after myeloablative BMT are predictive biomarkers of both acute GVHD and relapse. Bone Marrow Transplant. 2010;45(10):1546–1552. doi:10.1038/bmt.2010.1320190846
  • BurchertA, BugG, FritzLV, et al. Sorafenib maintenance after allogeneic hematopoietic stem cell transplantation for acute myeloid leukemia with FLT3 –internal tandem duplication mutation (SORMAIN). J Clin Oncol. 2020;38(26):2993–3002. doi:10.1200/JCO.19.0334532673171
  • MunnDH, SharmaMD, BabanB, et al. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity. 2005;22(5):633–642. doi:10.1016/j.immuni.2005.03.01315894280
  • MussaiF, De SantoC, Abu-DayyehI, et al. Acute myeloid leukemia creates an arginase-dependent immunosuppressive microenvironment. Blood. 2013;122(5):749–758. doi:10.1182/blood-2013-01-48012923733335
  • HäuslerSFM, Montalbán Del BarrioI, StrohscheinJ, et al. Ectonucleotidases CD39 and CD73 on OvCA cells are potent adenosine-generating enzymes responsible for adenosine receptor 2A-dependent suppression of T cell function and NK cell cytotoxicity. Cancer Immunol Immunother. 2011;60(10):1405–1418. doi:10.1007/s00262-011-1040-421638125
  • Beavis PaulA, StaggJ, DarcyPK, SmythMJ. CD73: a potent suppressor of antitumor immune responses. Trends Immunol. 2012;33(5):231–237. doi:10.1016/j.it.2012.02.00922487321
  • DulphyN, HenryG, HemonP, et al. Contribution of CD39 to the immunosuppressive microenvironment of acute myeloid leukaemia at diagnosis. Br J Haematol. 2014;165(5):722–725. doi:10.1111/bjh.1277424666252
  • UhlFM, ChenS, O’SullivanD, et al. Metabolic reprogramming of donor T cells enhances graft-versus-leukemia effects in mice and humans. Sci Transl Med. 2020;12(567):eabb8969. doi:10.1126/scitranslmed.abb896933115954
  • JanM, LeventhalMJ, MorganEA, et al. Recurrent genetic HLA loss in AML relapsed after matched unrelated allogeneic hematopoietic cell transplantation. Blood Adv. 2019;3(14):2199–2204. doi:10.1182/bloodadvances.201900044531324640
  • VagoL, PernaSK, ZanussiM, et al. Loss of mismatched HLA in leukemia after stem-cell transplantation. N Engl J Med. 2009;361(5):478–488. doi:10.1056/NEJMoa081103619641204
  • WaterhouseM, PfeiferD, PanticM, EmmerichF, BertzH, FinkeJ. Genome-wide profiling in AML patients relapsing after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2011;17(10):1450–1459.e1. doi:10.1016/j.bbmt.2011.07.01221781950
  • StölzelF, HackmannK, KuithanF, et al. Clonal evolution including partial loss of human leukocyte antigen genes favoring extramedullary acute myeloid leukemia relapse after matched related allogeneic hematopoietic stem cell transplantation. Transplantation. 2012;93(7):744–749. doi:10.1097/TP.0b013e318248111322314337
  • MasudaK, HirakiA, FujiiN, et al. Loss or down-regulation of HLA class I expression at the allelic level in freshly isolated leukemic blasts. Cancer Sci. 2007;98(1):102–108. doi:10.1111/j.1349-7006.2006.00356.x17083564
  • DuboisV, Sloan-BénaF, CesbronA, et al. Pretransplant HLA mistyping in diagnostic samples of acute myeloid leukemia patients due to acquired uniparental disomy. Leukemia. 2012;26(9):2079–2085. doi:10.1038/leu.2012.6822488219
  • CrucittiL, CrocchioloR, ToffaloriC, et al. Incidence, risk factors and clinical outcome of leukemia relapses with loss of the mismatched HLA after partially incompatible hematopoietic stem cell transplantation. Leukemia. 2015;29(5):1143–1152. doi:10.1038/leu.2014.31425371177
  • BarrettJ, BlazarBR. Genetic trickery — escape of leukemia from immune attack. N Engl J Med. 2009;361(5):524–525. doi:10.1056/NEJMe090317719641211
  • VagoL, CiceriF. Choosing the alternative. Biol Blood Marrow Transplant. 2017;23(11):1813–1814. doi:10.1016/j.bbmt.2017.09.00928939457
  • RovattiPE, GambacortaV, LorentinoF, CiceriF, VagoL. Mechanisms of leukemia immune evasion and their role in relapse after haploidentical hematopoietic cell transplantation. Front Immunol. 2020;11:147. doi:10.3389/fimmu.2020.0014732158444
  • ZhukovskyEA, MorseRJ, MausMV. Bispecific antibodies and CARs: generalized immunotherapeutics harnessing T cell redirection. Antigen Process Spec Sect New Concepts Antib Ther. 2016;40:24–35. doi:10.1016/j.coi.2016.02.006
  • ToffaloriC, ZitoL, GambacortaV, et al. Immune signature drives leukemia escape and relapse after hematopoietic cell transplantation. Nat Med. 2019;25(4):603–611. doi:10.1038/s41591-019-0400-z30911134
  • ChristopherMJ, PettiAA, RettigMP, et al. Immune escape of relapsed AML cells after allogeneic transplantation. N Engl J Med. 2018;379(24):2330–2341. doi:10.1056/NEJMoa180877730380364
  • NordeWJ, MaasF, HoboW, et al. PD-1/PD-L1 interactions contribute to functional T-cell impairment in patients who relapse with cancer after allogeneic stem cell transplantation. Cancer Res. 2011;71(15):5111–5122. doi:10.1158/0008-5472.CAN-11-010821659460
  • GreilR, HuttererE, HartmannTN, PleyerL. Reactivation of dormant anti-tumor immunity – a clinical perspective of therapeutic immune checkpoint modulation. Cell Commun Signal. 2017;15(1):5. doi:10.1186/s12964-016-0155-928100240
  • AlbringJC, InselmannS, SauerT, et al. PD-1 checkpoint blockade in patients with relapsed AML after allogeneic stem cell transplantation. Bone Marrow Transplant. 2017;52(2):317–320. doi:10.1038/bmt.2016.27427892950
  • DavidsMS, KimHT, BachireddyP, et al. Ipilimumab for patients with relapse after allogeneic transplantation. N Engl J Med. 2016;375(2):143–153. doi:10.1056/NEJMoa160120227410923
  • IjazA, KhanAY, MalikSU, et al. Significant risk of graft-versus-host disease with exposure to checkpoint inhibitors before and after allogeneic transplantation. Biol Blood Marrow Transplant. 2019;25(1):94–99. doi:10.1016/j.bbmt.2018.08.02830195074
  • DaverN, BodduP, Garcia-ManeroG, et al. Hypomethylating agents in combination with immune checkpoint inhibitors in acute myeloid leukemia and myelodysplastic syndromes. Leukemia. 2018;32(5):1094–1105. doi:10.1038/s41375-018-0070-829487386
  • DaverN, Garcia-ManeroG, BasuS, et al. Efficacy, safety, and biomarkers of response to azacitidine and nivolumab in relapsed/refractory acute myeloid leukemia: a nonrandomized, open-label, phase II study. Cancer Discov. 2019;9(3):370–383. doi:10.1158/2159-8290.CD-18-077430409776
  • GhoshA, BarbaP, PeralesM. Checkpoint inhibitors in AML: are we there yet?Br J Haematol. 2020;188(1):159–167. doi:10.1111/bjh.1635831808941
  • EhxG, LaroucheJ-D, DuretteC, et al. Atypical acute myeloid leukemia-specific transcripts generate shared and immunogenic MHC class-I-associated epitopes. Immunity. 2021;54(4):737–752.e10. doi:10.1016/j.immuni.2021.03.00133740418
  • ZeiserR, VagoL. Mechanisms of immune escape after allogeneic hematopoietic cell transplantation. Blood. 2019;133(12):1290–1297. doi:10.1182/blood-2018-10-84682430578254
  • AmbinderAJ, LevisM. Potential targeting of FLT3 acute myeloid leukemia. Haematologica. 2020;106(3):671–681. doi:10.3324/haematol.2019.240754
  • DaverN, SchlenkRF, RussellNH, LevisMJ. Targeting FLT3 mutations in AML: review of current knowledge and evidence. Leukemia. 2019;33(2):299–312. doi:10.1038/s41375-018-0357-930651634
  • KottaridisPD, GaleRE, FrewME, et al. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood. 2001;98(6):1752–1759. doi:10.1182/blood.V98.6.175211535508
  • StoneRM, MandrekarSJ, SanfordBL, et al. Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation. N Engl J Med. 2017;377(5):454–464. doi:10.1056/NEJMoa161435928644114
  • CortesJE, KhaledS, MartinelliG, et al. Quizartinib versus salvage chemotherapy in relapsed or refractory FLT3-ITD acute myeloid leukaemia (QuANTUM-R): a multicentre, randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2019;20(7):984–997. doi:10.1016/S1470-2045(19)30150-031175001
  • PerlAE, MartinelliG, CortesJE, et al. Gilteritinib or chemotherapy for relapsed or refractory FLT3 -mutated AML. N Engl J Med. 2019;381(18):1728–1740. doi:10.1056/NEJMoa190268831665578
  • MillCP, FiskusW, DiNardoCD, et al. RUNX1-targeted therapy for AML expressing somatic or germline mutation in RUNX1. Blood. 2019;134(1):59–73. doi:10.1182/blood.201889398231023702
  • PhillipsDC, JinS, GregoryGP, et al. A novel CDK9 inhibitor increases the efficacy of venetoclax (ABT-199) in multiple models of hematologic malignancies. Leukemia. 2020;34(6):1646–1657. doi:10.1038/s41375-019-0652-031827241
  • BogenbergerJ, WhatcottC, HansenN, et al. Combined venetoclax and alvocidib in acute myeloid leukemia. Oncotarget. 2017;8(63):107206–107222. doi:10.18632/oncotarget.2228429291023
  • OellerichT, MohrS, CorsoJ, et al. FLT3-ITD and TLR9 use Bruton tyrosine kinase to activate distinct transcriptional programs mediating AML cell survival and proliferation. Blood. 2015;125(12):1936–1947. doi:10.1182/blood-2014-06-58521625605370
  • GöllnerS, OellerichT, Agrawal-SinghS, et al. Loss of the histone methyltransferase EZH2 induces resistance to multiple drugs in acute myeloid leukemia. Nat Med. 2017;23(1):69–78. doi:10.1038/nm.424727941792
  • AtanackovicD, LuetkensT, KlothB, et al. Cancer-testis antigen expression and its epigenetic modulation in acute myeloid leukemia. Am J Hematol. 2011;86(11):918–922. doi:10.1002/ajh.2214121898529
  • GoodyearO, AgathanggelouA, Novitzky-BassoI, et al. Induction of a CD8+ T-cell response to the MAGE cancer testis antigen by combined treatment with azacitidine and sodium valproate in patients with acute myeloid leukemia and myelodysplasia. Blood. 2010;116(11):1908–1918. doi:10.1182/blood-2009-11-24947420530795
  • GoodyearOC, DennisM, JilaniNY, et al. Azacitidine augments expansion of regulatory T cells after allogeneic stem cell transplantation in patients with acute myeloid leukemia (AML). Blood. 2012;119(14):3361–3369. doi:10.1182/blood-2011-09-37704422234690
  • ChoiJ, RitcheyJ, PriorJL, et al. In vivo administration of hypomethylating agents mitigate graft-versus-host disease without sacrificing graft-versus-leukemia. Blood. 2010;116(1):129–139. doi:10.1182/blood-2009-12-25725320424188
  • ØrskovAD, TreppendahlMB, SkovboA, et al. Hypomethylation and up-regulation of PD-1 in T cells by azacytidine in MDS/AML patients: a rationale for combined targeting of PD-1 and DNA methylation. Oncotarget. 2015;6(11):9612–9626. doi:10.18632/oncotarget.332425823822
  • LaportGG, SheehanK, BakerJ, et al. Adoptive immunotherapy with cytokine-induced killer cells for patients with relapsed hematologic malignancies after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2011;17(11):1679–1687. doi:10.1016/j.bbmt.2011.05.01221664472