85
Views
10
CrossRef citations to date
0
Altmetric
Original Research

Significance of Oncotype DX 21-Gene Test and Expression of Long Non-Coding RNA MALAT1 in Early and Estrogen Receptor-Positive Breast Cancer Patients

, , , , , & show all
Pages 587-593 | Published online: 22 Jan 2021

References

  • McGuire A, Brown JA, Malone C, McLaughlin R, Kerin MJ. Effects of age on the detection and management of breast cancer. Cancers. 2015;7:908–929. doi:10.3390/cancers702081526010605
  • Kulkoyluoglu-Cotul E, Arca A, Madak-Erdogan Z. Crosstalk between estrogen signaling and breast cancer metabolism. Trends Endocrinol Metab. 2018. doi:10.1016/j.tem.2018.10.006
  • Li Z, Zhang Y, Zhang Z, Zhao Z, Lv Q. A four-gene signature predicts the efficacy of paclitaxel-based neoadjuvant therapy in human epidermal growth factor receptor 2-negative breast cancer. J Cell Biochem. 2018. doi:10.1002/jcb.27891
  • Buechler SA, Gokmen-Polar Y, Badve SS. EarlyR signature predicts response to neoadjuvant chemotherapy in breast cancer. Breast. 2018;43:74–80. doi:10.1016/j.breast.2018.11.00630502641
  • Aalders KC, Kuijer A, Straver ME, et al. Characterisation of multifocal breast cancer using the 70-gene signature in clinical low-risk patients enrolled in the EORTC 10041/BIG 03-04 MINDACT trial. Eur J Cancer. 2017;79:98–105. doi:10.1016/j.ejca.2017.03.03428477490
  • Wallden B, Storhoff J, Nielsen T, et al. Development and verification of the PAM50-based Prosigna breast cancer gene signature assay. BMC Med Genomics. 2015;8:54. doi:10.1186/s12920-015-0129-626297356
  • Cobleigh MA, Tabesh B, Bitterman P, et al. Tumor gene expression and prognosis in breast cancer patients with 10 or more positive lymph nodes. Clin Cancer Res. 2005;11:8623–8631. doi:10.1158/1078-0432.CCR-05-073516361546
  • Tang G, Shak S, Paik S, et al. Comparison of the prognostic and predictive utilities of the 21-gene Recurrence Score assay and Adjuvant! For women with node-negative, ER-positive breast cancer: results from NSABP B-14 and NSABP B-20. Breast Cancer Res Treat. 2011;127:133–142. doi:10.1007/s10549-010-1331-z21221771
  • Albanell J, Gonzalez A, Ruiz-Borrego M, et al. Prospective transGEICAM study of the impact of the 21-gene Recurrence Score assay and traditional clinicopathological factors on adjuvant clinical decision making in women with estrogen receptor-positive (ER+) node-negative breast cancer. Ann Oncol. 2012;23:625–631. doi:10.1093/annonc/mdr27821652577
  • Kelly CM, Bernard PS, Krishnamurthy S, et al. Agreement in risk prediction between the 21-gene recurrence score assay (Onco type DX®) and the PAM50 breast cancer intrinsic classifier™ in early-stage estrogen receptor–positive breast cancer. Oncol. 2012;17:492–498. doi:10.1634/theoncologist.2012-0007
  • Chen XH, Zhang WW, Wang J, et al. 21-gene recurrence score and adjuvant chemotherapy decisions in patients with invasive lobular breast cancer. Biomark Med. 2018. doi:10.2217/bmm-2018-0396
  • Khan MA, Henderson L, Clarke D, Harries S, Jones L. The Warwick experience of the Oncotype DX(R) Breast Recurrence Score(R) assay as a predictor of chemotherapy administration. Breast Care. 2018;13:369–372. doi:10.1159/00048913130498424
  • Geyer CE, Tang G, Mamounas EP, et al. 21-gene assay as predictor of chemotherapy benefit in HER2-negative breast cancer. NPJ Breast Cancer. 2018;4:37. doi:10.1038/s41523-018-0090-630456299
  • Green N, Al-Allak A, Fowler C. Benefits of introduction of Oncotype DX((R)) testing. Ann R Coll Surg Engl. 2019;101:55–59. doi:10.1308/rcsann.2018.017330322288
  • Perkel JM. Visiting “noncodarnia”. BioTechniques. 2013;54:301, 303–304. doi:10.2144/00011403723750541
  • Sun M, Kraus WL. From discovery to function: the expanding roles of long noncoding RNAs in physiology and disease. Endocr Rev. 2015;36:25–64. doi:10.1210/er.2014-103425426780
  • Klinge CM. Non-coding RNAs in breast cancer: intracellular and intercellular communication. Non Coding RNA. 2018;4:40. doi:10.3390/ncrna4040040
  • Zhao M, Wang S, Li Q, Ji Q, Guo P, Liu X. MALAT1: a long non-coding RNA highly associated with human cancers. Oncol Lett. 2018;16:19–26. doi:10.3892/ol.2018.861329928382
  • Li ZX, Zhu Q-N, Zhang H-B, et al. MALAT1: a potential biomarker in cancer. Cancer Manag Res. 2018;10:6757–6768. doi:10.2147/CMAR.S16940630584369
  • Kim I, Choi HJ, Ryu JM, et al. A predictive model for high/low risk group according to oncotype DX recurrence score using machine learning. Eur J Surg Oncol. 2019;45:134–140. doi:10.1016/j.ejso.2018.09.01130348602
  • Jha MK, Lee S, Park DH, et al. Diverse functional roles of lipocalin-2 in the central nervous system. Neurosci Biobehav Rev. 2015;49:135–156. doi:10.1016/j.neubiorev.2014.12.00625511817
  • Ji DG, Guan L-Y, Luo X, et al. Inhibition of MALAT1 sensitizes liver cancer cells to 5-flurouracil by regulating apoptosis through IKKalpha/NF-kappaB pathway. Biochem Biophys Res Commun. 2018;501:33–40. doi:10.1016/j.bbrc.2018.04.11629702091
  • Chen R, Liu Y, Zhuang H, et al. Quantitative proteomics reveals that long non-coding RNA MALAT1 interacts with DBC1 to regulate p53 acetylation. Nucleic Acids Res. 2017;45:9947–9959. doi:10.1093/nar/gkx60028973437
  • Yuan J, Xu XJ, Lin Y, et al. LncRNA MALAT1 expression inhibition suppresses tongue squamous cell carcinoma proliferation, migration and invasion by inactivating PI3K/Akt pathway and downregulating MMP-9 expression. Eur Rev Med Pharmacol Sci. 2019;23:198–206. doi:10.26355/eurrev_201901_1676530657561
  • Wang Z, Katsaros D, Biglia N, et al. High expression of long non-coding RNA MALAT1 in breast cancer is associated with poor relapse-free survival. Breast Cancer Res Treat. 2018;171:261–271. doi:10.1007/s10549-018-4839-229845475