121
Views
7
CrossRef citations to date
0
Altmetric
Review

Further Understanding of the Immune Microenvironment in Head and Neck Squamous Cell Carcinoma: Implications for Prognosis

, ORCID Icon &
Pages 3973-3980 | Published online: 17 May 2021

References

  • Merlano MC, Denaro N, Galizia D, Garrone O. How I treat squamous ENT cancer. ESMO Open. 2019;4(Suppl 2):e000542. doi:10.1136/esmoopen-2019-00054231555490
  • Economopoulou P, Kotsantis I, Psyrri A. Tumor microenvironment and immunotherapy response in head and neck cancer. Cancers. 2020;12(11):3377. doi:10.3390/cancers12113377
  • Chalmers ZR, Connelly CF, Fabrizio D, et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 2017;9(1):34. doi:10.1186/s13073-017-0424-228420421
  • Pries R, Wollenberg B. Cytokines in head and neck cancer. Cytokine Growth Factor Rev. 2006;17(3):141–146. doi:10.1016/j.cytogfr.2006.02.00116540364
  • Veglia F, Perego M, Gabrilovich D. Myeloid-derived suppressor cells coming of age. Nat Immunol. 2018;19(2):108–119. doi:10.1038/s41590-017-0022-x29348500
  • Brocks CP, Pries R, Frenzel H, Ernst M, Schlenke P, Wollenberg B. Functional alteration of myeloid dendritic cells through head and neck cancer. Anticancer Res. 2007;27:817–824.17465207
  • Tesi RJ. MDSC; the Most Important Cell You Have Never Heard Of. Trends Pharmacol Sci. 2019;40(1):1. doi:10.1016/j.tips.2018.10.00830528463
  • Yu GT, Bu LL, Huang CF. PD-1 Blockade Attenuates Immunosuppressive Myeloid Cells Due to Inhibition of CD47/SIRPα Axis in HPV Negative Head and Neck Squamous Cell Carcinoma. Oncotarget. 2015;6:42067–42080. doi:10.18632/oncotarget.595526573233
  • Russell S, Angell T, Lechner M, et al. Immune Cell Infiltration Patterns and Survival in Head and Neck Squamous Cell Carcinoma. Head Neck Oncol. 2013;5:24.24723971
  • Partlová S, Bouček J, Kloudová K, et al. Distinct Patterns of Intratumoral Immune Cell Infiltrates in Patients with HPV-Associated Compared to Non-Virally Induced Head and Neck Squamous Cell Carcinoma. Oncoimmunology. 2015;4(1):e965570. doi:10.4161/21624011.2014.96557025949860
  • Frenzel H, Hoffmann B, Brocks C, Schlenke P, Pries R, Wollenberg B. Toll-like receptor interference in myeloid dendritic cells through head and neck cancer. Anticancer Res. 2006;26(6B):4409–4413.17201162
  • Jouhi L, Mohamed H, Mäkitie A, et al. Toll-like receptor 5 and 7 expression may impact prognosis of HPV-positive oropharyngeal squamous cell carcinoma patients. Cancer Immunol Immunother. 2017;66(12):1619–1629. doi:10.1007/s00262-017-2054-328856441
  • Lang S, Bruderek K, Kaspar C, et al. Clinical Relevance and Suppressive Capacity of Human Myeloid-Derived Suppressor Cell Subsets. Clin Cancer Res. 2018;24:4834–4844. doi:10.1158/1078-0432.CCR-17-372629914893
  • Chávez-Galán L, Olleros ML, Vesin D, Garcia I. Much More than M1 and M2 Macrophages, There are also CD169(+) and TCR(+) Macrophages. Front Immunol. 2015;6:263. doi:10.3389/fimmu.2015.0026326074923
  • Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P. Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol. 2017;14:399–416. doi:10.1038/nrclinonc.2016.21728117416
  • Wu S, Dai X, Xie D. Identification and Validation of an Immune-Related RNA Signature to Predict Survival of Patients With Head and Neck Squamous Cell Carcinoma. Front Genet. 2019;10:1252. doi:10.3389/fgene.2019.0125231921296
  • Gomez KE, Wu FL, Keysar SB, et al. Cancer Cell CD44 Mediates Macrophage/Monocyte-Driven Regulation of Head and Neck Cancer Stem Cells. Tumor Biol Immunol. 2020;80(19):54.
  • Wondergem NE, Nauta IH, Muijlwijk T, Leemans CR, van de Ven R. The immune microenvironment in head and neck squamous cell carcinoma: on subsets and subsites. Curr Oncol Rep. 2020;22(8):81. doi:10.1007/s11912-020-00938-332602047
  • Mishra PJ, Mishra PJ, Humeniuk R, et al. Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Res. 2008;68:4331–4339. doi:10.1158/0008-5472.CAN-08-094318519693
  • Chen X, Song E. Turning foes to friends: targeting cancer-associated fibroblasts. Nat Rev Drug Discov. 2019;18(2):99–115. doi:10.1038/s41573-018-0004-130470818
  • Ortiz-Otero N, Clinch AB, Hope J, Wang W, Reinhart-King CA, King MR. Cancer associated fibroblasts confer shear resistance to circulating tumor cells during prostate cancer metastatic progression. Oncotarget. 2020;11(12):1037–1050. doi:10.18632/oncotarget.2751032256977
  • Hinsley EE, de Oliveira CE, Hunt S, Coletta RD, Lambert DW. Angiotensin 1-7 inhibits angiotensin II-stimulated head and neck cancer progression. Eur J Oral Sci. 2017;125(4):247–257. doi:10.1111/eos.1235628653423
  • Diop-Frimpong B, Chauhan VP, Krane S, Boucher Y, Jain RK. Losartan inhibits collagen I synthesis and improves the distribution and efficacy of nanotherapeutics in tumors. Proc Natl Acad Sci U S A. 2011;108(7):2909–2914. doi:10.1073/pnas.101889210821282607
  • Xie G, Cheng T, Lin J, et al. Local angiotensin II contributes to tumor resistance to checkpoint immunotherapy. J Immunotherapy Cancer. 2018;6(1):88. doi:10.1186/s40425-018-0401-3
  • Nakamura K, Yaguchi T, Ohmura G, et al. Involvement of local renin-angiotensin system in immunosuppression of tumor microenvironment. Cancer Sci. 2018;109(1):54–64. doi:10.1111/cas.1342329034589
  • Denaro N, Russi EG, Colantonio I, Adamo V, Merlano MC. The role of antiangiogenic agents in the treatment of head and neck cancer. Oncology. 2012;83(2):108–116. doi:10.1159/00033954222777379
  • Gallo O, Fini-Storchi I, Vergari WA, et al. Role of nitric oxide in angiogenesis and tumor progression in head and neck cancer. JNCI: J Nat Cancer Inst. 1998;90(8):587–596. doi:10.1093/jnci/90.8.5879554441
  • Augustin RC, Delgoffe GM, Najjar YG. Characteristics of the tumor microenvironment that influence immune cell functions: hypoxia, oxidative stress, metabolic alterations. Cancers. 2020;12(12):3802. doi:10.3390/cancers12123802
  • Bommi PV, Chand V, Mukhopadhyay NK, Raychaudhuri P, Bagchi S. NER-factor DDB2 regulates HIF1α and hypoxia-response genes in HNSCC. Oncogene. 2020;39(8):1784–1796. doi:10.1038/s41388-019-1105-y31740787
  • Bommi PV, Ravindran S, Raychaudhuri P, Bagchi S. DDB2 regulates Epithelial-to-Mesenchymal Transition (EMT) in Oral/Head and Neck Squamous Cell Carcinoma. Oncotarget. 2018;9(78):34708–34718. doi:10.18632/oncotarget.2616830410671
  • Argiris A, Li S, Savvides P, et al. Phase III randomized trial of chemotherapy with or without bevacizumab in patients with recurrent or metastatic head and neck cancer. J Clin Oncol. 2019;37(34):3266–3274. doi:10.1200/JCO.19.0055531618129
  • The Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015;517(7536):576–582. doi:10.1038/nature1412925631445
  • Chen YP, Wang YQ, Lv JW, et al. Identification and validation of novel microenvironment-based immune molecular subgroups of head and neck squamous cell carcinoma: implications for immunotherapy. Ann Oncol. 2019;30:68–75. doi:10.1093/annonc/mdy47030407504
  • Cillo AR, Kürten CHL, Tabib T, et al. Immune Landscape of Viral- and Carcinogen-Driven Head and Neck Cancer. Immunity. 2020;52:183–199. doi:10.1016/j.immuni.2019.11.01431924475
  • She Y, Kong X, Ge Y, et al. Immune-related gene signature for predicting the prognosis of head and neck squamous cell carcinoma. Cancer Cell Int. 2020;20(1):22. doi:10.1186/s12935-020-1104-731988638
  • Burtness B, Harrington KJ, Greil R, et al. Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): a randomised, open-label, Phase 3 study. Lancet. 2019;394(10212):1915–1928. doi:10.1016/S0140-6736(19)32591-731679945
  • Wang H, Wu X, Chen Y. Stromal-immune score-based gene signature: a prognosis stratification tool in gastric cancer. Front Oncol. 2019;9:1212. doi:10.3389/fonc.2019.0121231781506
  • Kouidhi S, Ben Ayed F, Benammar Elgaaied A. Targeting Tumor Metabolism: a New Challenge to Improve Immunotherapy. Front Immunol. 2018;9:353. doi:10.3389/fimmu.2018.0035329527212
  • Chaudhary S, Ganguly K, Muniyan S, et al. Imunometabolic Alterations by HPV Infection: new Dimensions to Head and Neck Cancer Disparity. J Natl Cancer Inst. 2019;111:233–244. doi:10.1093/jnci/djy20730615137
  • Leduc C, Adam J, Louvet E, et al. TPF induction chemotherapy increases PD-L1 expression in tumour cells and immune cells in head and neck squamous cell carcinoma. ESMO Open. 2018;3:e000257. doi:10.1136/esmoopen-2017-00025729344407
  • Ferris RL, Saba NF, Gitlitz BJ, et al. Effect of Adding motolimod to standard combination chemotherapy and cetuximab treatment of patients with squamous cell carcinoma of the head and neck: the active8 randomized clinical trial. JAMA Oncol. 2018;4(11):1583–1588. doi:10.1001/jamaoncol.2018.188829931076
  • Kwon M, Jung H, Nam GH, Kim IS. The right Timing, right combination, right sequence, and right delivery for Cancer immunotherapy. J Control Release. 2021;331:321–334. doi:10.1016/j.jconrel.2021.01.00933434599
  • Rini BI, Powles T, Atkins MB, et al. Atezolizumab plus bevacizumab versus sunitinib in patients with previously untreated metastatic renal cell carcinoma (IMmotion151): a multicentre, open-label, phase 3, randomised controlled trial. Lancet. 2019;393(10189):2404–2415. doi:10.1016/S0140-6736(19)30723-831079938
  • Donlon NE, Power R, Hayes C, Reynolds JV, Lysaght J. Radiotherapy, immunotherapy, and the tumour microenvironment: turning an immunosuppressive milieu into a therapeutic opportunity. Cancer Lett. 2021;502:84–96. doi:10.1016/j.canlet.2020.12.04533450360
  • Jiang P, Gu S, Pan D, et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat Med. 2018;24(10):1550–1558. doi:10.1038/s41591-018-0136-130127393
  • Zhang C, Luo Y, Zhang Z, et al. Identification of a prognostic immune signature for esophageal squamous cell carcinoma to predict survival and inflammatory landscapes. Front Cell Dev Biol. 2020;8. doi:10.3389/fcell.2020.580005