96
Views
7
CrossRef citations to date
0
Altmetric
Review

Current Insights into the Management of Late Chemotherapy Toxicities in Pediatric Osteosarcoma Patients

, , , &
Pages 8989-8998 | Published online: 01 Dec 2021

References

  • Bielack S, Cable MG, Gorlick R, et al. Osteosarcoma - approach to therapy. C. A. S. Arndt (ed.), Sarcomas of bone and soft tissues in children and adolescents. Pediatr Oncol. 2021:91–109. doi:10.1007/978-3-030-51160-9_8
  • Gaspar N, Marques da Costa ME, Fromigue Oet al. Recent Advances in Understanding Osteosarcoma and Emerging Therapies. Fac Rev. 2020;9:18. doi:10.12703/r/9-1833659950
  • Just MA, Van Mater D, Wagner LM. Receptor tyrosine kinase inhibitors for the treatment of osteosarcoma and Ewing sarcoma. Pediatr Blood Cancer. 2021;24:e29084. doi:10.1002/pbc.29084
  • Hawkins M, Bhatia S, Henderson TO, et al. Subsequent primary neoplasms: risks, risk factors, surveillance, and future research. Pediatr Clin North Am. 2020;67(6):1135–1154. doi:10.1016/j.pcl.2020.07.00633131538
  • Möller TR, Garwicz S, Barlow L, et al. Decreasing late mortality among five-year survivors of cancer in childhood and adolescence: a population-based study in the Nordic countries. J Clin Oncol. 2001;19(13):3173–3181. doi:10.1200/JCO.2001.19.13.317311432883
  • Sanford NN, Martin AM, Brunner AM, et al. Secondary acute leukemia in sarcoma patients: a population-based study. Int J Radiat Oncol Biol Phys. 2018;100(3):687–694. doi:10.1016/j.ijrobp.2017.11.01129413281
  • Hall EJ, Brenner DJ. Cancer risks from diagnostic radiology. Br J Radiol. 2008;81(965):362–378. doi:10.1259/bjr/0194845418440940
  • Kratz CP, Jongmans MC, Cavé H, et al. Predisposition to cancer in children and adolescents. Lancet Child Adolesc Health. 2021;5(2):142–154. doi:10.1016/S2352-4642(20)30275-333484663
  • Winer ES. Secondary acute myeloid leukemia: a primary challenge of diagnosis and treatment. Hematol Oncol Clin North Am. 2020;34(2):449–463. doi:10.1016/j.hoc.2019.11.00332089222
  • Oliai C, Schiller G. How to address second and therapy-related acute myelogenous leukaemia. Br J Haematol. 2020;188(1):116–128. doi:10.1111/bjh.1635431863469
  • Higgins A, Shah MV. Genetic and genomic landscape of secondary and therapy-related acute myeloid leukemia. Genes. 2020;11(7):749. doi:10.3390/genes11070749
  • Bhatia S. Therapy-related myelodysplasia and acute myeloid leukemia. Semin Oncol. 2013;40(6):666–675. doi:10.1053/j.seminoncol.2013.09.01324331189
  • Van der Zanden SY, Qiao X, Neefjes J. New insights into the activities and toxicities of the old anticancer drug doxorubicin. FEBS J. 2020. doi:10.1111/febs.15583
  • Boddu P, Kantarjian HM, Garcia-Manero G, et al. Treated secondary acute myeloid leukemia: a distinct high-risk subset of AML with adverse prognosis. Blood Adv. 2017;1(17):1312–1323. doi:10.1182/bloodadvances.201700822729296774
  • Schwartz B, Benadjaoud MA, Cléro E, et al. Risk of second bone sarcoma following childhood cancer: role of radiation therapy treatment. Radiat Environ Biophys. 2014;53(2):381–390. doi:10.1007/s00411-013-0510-924419490
  • Schonfeld SJ, Merino DM, Curtis RE, et al. Risk of second primary bone and soft-tissue sarcomas among young adulthood cancer survivors. JNCI Cancer Spectr. 2019;3(3):pkz043. doi:10.1093/jncics/pkz04332566895
  • Franke M, Hardes J, Helmke K, et al. Solitary skeletal osteosarcoma recurrence. Findings from the Cooperative Osteosarcoma Study Group. Pediatr Blood Cancer. 2011;56(5):771–776. doi:10.1002/pbc.2286421370409
  • Mirabello L, Zhu B, Koster R, et al. Frequency of pathogenic germline variants in cancer-susceptibility genes in patients with osteosarcoma. JAMA Oncol. 2020;6(5):724–734. doi:10.1001/jamaoncol.2020.019732191290
  • Smith MA, Ungerleider RS, Horowitz ME, et al. Influence of doxorubicin dose intensity on response and outcome for patients with osteogenic sarcoma and Ewing’s sarcoma. J Natl Cancer Inst. 1991;83(20):1460–1470. doi:10.1093/jnci/83.20.14601833556
  • Franco VI, Lipshultz SE. Cardiac complications in childhood cancer survivors treated with anthracyclines. Cardiol Young. 2015;25(S2):107–116. doi:10.1017/S104795111500090626377717
  • Mancilla TR, Iskra B, Aune GJ. Doxorubicin-induced cardiomyopathy in children. Compr Physiol. 2019;9(3):905–931. doi:10.1002/cphy.c18001731187890
  • Towbin JA, Lowe AM, Colan SD, et al. Incidence, causes, and outcomes of dilated cardiomyopathy in children. JAMA. 2006;296(15):1867–1876. doi:10.1001/jama.296.15.186717047217
  • Bhagat A, Kleinerman ES. Anthracycline-induced cardiotoxicity: causes, mechanisms, and prevention. Adv Exp Med Biol. 2020;1257:181–192. doi:10.1007/978-3-030-43032-0_1532483740
  • Rawat PS, Jaiswal A, Khurana A, et al. Doxorubicin-induced cardiotoxicity: an update on the molecular mechanism and novel therapeutic strategies for effective management. Biomed Pharmacother. 2021;139:111708. doi:10.1016/j.biopha.2021.11170834243633
  • Russo M, Della Sala A, Tocchetti CG, et al. Metabolic aspects of anthracycline cardiotoxicity. Curr Treat Options Oncol. 2021;22(2):18. doi:10.1007/s11864-020-00812-133547494
  • Armenian SH, Hudson MM, Mulder RL, et al. Recommendations for cardiomyopathy surveillance for survivors of childhood cancer: a report from the International Late Effects of Childhood Cancer Guideline Harmonization Group. Lancet Oncol. 2015;16(3):e123–36. doi:10.1016/S1470-2045(14)70409-725752563
  • Garcia-Pavia P, Kim Y, Restrepo-Cordoba MA, et al. Genetic variants associated with cancer therapy-induced cardiomyopathy. Circulation. 2019;140(1):31–41. doi:10.1161/CIRCULATIONAHA.118.03793430987448
  • Hoff DD, Layard MW, Basa P, et al. Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med. 1979;91(5):710–717. doi:10.7326/0003-4819-91-5-710496103
  • Bielack SS, Erttmann R, Winkler K, et al. Doxorubicin: effect of different schedules on toxicity and anti-tumor efficacy. Eur J Cancer Clin Oncol. 1989;25(5):873–882. doi:10.1016/0277-5379(89)90135-12661240
  • Lipshultz SE, Miller TL, Lipsitz SR, et al. Continuous versus bolus infusion of doxorubicin in children with ALL: long-term cardiac outcomes. Pediatrics. 2012;130(6):1003–1011. doi:10.1542/peds.2012-072723166343
  • Cowgill JA, Francis SA, Sawyer DB. Anthracycline and peripartum cardiomyopathies. Circ Res. 2019;124(11):1633–1646. doi:10.1161/CIRCRESAHA.119.31357731120822
  • Menna P, Salvatorelli E. Primary prevention strategies for anthracycline cardiotoxicity: a brief overview. Chemotherapy. 2017;62(3):159–168. doi:10.1159/00045582328122377
  • Bansal N, Adams MJ, Ganatra S, et al. Strategies to prevent anthracycline-induced cardiotoxicity in cancer survivors. Cardiooncology. 2019;5:18. doi:10.1186/s40959-019-0054-532154024
  • Kopp LM, Womer RB, Schwartz CL, et al. Effects of dexrazoxane on doxorubicin-related cardiotoxicity and second malignant neoplasms in children with osteosarcoma: a report from the children’s oncology group. Cardiooncology. 2019;5:15. doi:10.1186/s40959-019-0050-932154021
  • Cheuk DK, Sieswerda E, van Dalen EC, et al. Medical interventions for treating anthracycline-induced symptomatic and asymptomatic cardiotoxicity during and after treatment for childhood cancer. Cochrane Database Syst Rev. 2016;(8):CD008011. doi:10.1002/14651858.CD008011.pub327552363
  • Bock MJ, Pahl E, Rusconi PG, et al. Cancer recurrence and mortality after pediatric heart transplantation for anthracycline cardiomyopathy: a report from the Pediatric Heart Transplant Study (PHTS) group. Pediatr Transplant. 2017;21(5):e12923. doi:10.1111/petr.12923
  • Shugh SB, Ryan TD. Heart transplantation in survivors of childhood cancer. Transl Pediatr. 2019;8(4):314–321. doi:10.21037/tp.2019.06.0231728324
  • Curigliano G, Lenihan D, Fradley M, et al. Management of cardiac disease in cancer patients throughout oncological treatment: ESMO consensus recommendations. Ann Oncol. 2020;31(2):171–190. doi:10.1016/j.annonc.2019.10.02331959335
  • Thornley P, Vicente M, MacDonald A, et al. Causes and frequencies of reoperations after endoprosthetic reconstructions for extremity tumor surgery: a systematic review. Clin Orthop Relat Res. 2019;477(4):894–902. doi:10.1097/CORR.000000000000063030801278
  • Grinberg SZ, Posta A, Weber KL, et al. Limb salvage and reconstruction options in osteosarcoma. Adv Exp Med Biol. 2020;1257:13–29. doi:10.1007/978-3-030-43032-0_232483727
  • Clemens E, van den Heuvel-eibrink MM, Mulder RL, et al. Recommendations for ototoxicity surveillance for childhood, adolescent, and young adult cancer survivors: a report from the International Late Effects of Childhood Cancer Guideline Harmonization Group in collaboration with the PanCare Consortium. Lancet Oncol. 2019;20(1):e29–e41. doi:10.1016/S1470-2045(18)30858-130614474
  • Romano A, Capozza MA, Mastrangelo S, et al. Assessment and management of platinum-related ototoxicity in children treated for cancer. Cancers. 2020;12(5):1266. doi:10.3390/cancers12051266
  • van As JW, van den Berg H, van Dalen EC. Platinum-induced hearing loss after treatment for childhood cancer. Cochrane Database Syst Rev. 2016;2016(8):CD010181. doi:10.1002/14651858.CD010181.pub2
  • Moke DJ, Luo C, Millstein J, et al. Prevalence and risk factors for cisplatin-induced hearing loss in children, adolescents, and young adults: a multi-institutional North American cohort study. Lancet Child Adolesc Health. 2021;5(4):274–283. doi:10.1016/S2352-4642(21)00020-133581749
  • Freyer DR, Brock PR, Chang KW, et al. Prevention of cisplatin-induced ototoxicity in children and adolescents with cancer: a clinical practice guideline. Lancet Child Adolesc Health. 2020;4(2):141–150. doi:10.1016/S2352-4642(19)30336-031866182
  • Skinner R. Late renal toxicity of treatment for childhood malignancy: risk factors, long-term outcomes, and surveillance. Pediatr Nephrol. 2018;33(2):215–225. doi:10.1007/s00467-017-3662-z28434047
  • Howard SC, McCormick J, Pui CH, et al. Preventing and managing toxicities of high-dose methotrexate. Oncologist. 2016;21(12):1471–1482. doi:10.1634/theoncologist.2015-016427496039
  • Foreman JW. Fanconi syndrome. Pediatr Clin Noth Am. 2019;66(1):159–167. doi:10.1016/j.pcl.2018.09.002
  • Rossi R, Danzebrink S, Hillebrand D, et al. Ifosfamide-induced subclinical nephrotoxicity and its potentiation by cisplatinum. Med Pediatr Oncol. 1994;22(1):27–32. doi:10.1002/mpo.29502201068232077
  • Hanly L, Chen N, Rieder M, et al. Ifosfamide nephrotoxicity in children: a mechanistic base for pharmacological prevention. Expert Opin Drug Saf. 2009;8(2):155–168. doi:10.1517/1474033090280816919309244
  • Krull KR, Hardy KK, Kahalley LS, et al. Neurocognitive outcomes and interventions in long-term survivors of childhood cancer. J Clin Oncol. 2018;36(21):2181–2189. doi:10.1200/JCO.2017.76.469629874137
  • Avan A, Postma TJ, Ceresa C, et al. Platinum-induced neurotoxicity and preventive strategies: past, present, and future. Oncologist. 2015;20(4):411–432. doi:10.1634/theoncologist.2014-004425765877
  • Epstein JB, Thariat J, Bensadoun RJ, et al. Oral complications of cancer and cancer therapy: from cancer treatment to survivorship. CA Cancer J Clin. 2012;62(6):400–422. doi:10.3322/caac.2115722972543
  • Laws HJ, Baumann U, Bogdan C, et al. Vaccinations in immunodeficiency. Application notes for vaccinations recommended by the Ständige Impfkommission. (III) Vaccinations in hematological and oncological diseases (antineoplastic therapy, stem cell transplantation), organ transplantation, and asplenia. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2020;63(5):588–644. German. doi:10.1007/s00103-020-03123-w32350583
  • Rubin LG, Levin MJ, Ljungman P, et al. IDSA clinical practice guideline for vaccination of the immunocompromised host. Clin Infect Dis. 2014;58(3):309–318. doi:10.1093/cid/cit81624421306
  • Cesaro S, Giacchino M, Fioredda F, et al. Guidelines on vaccinations in paediatric haematology and oncology patients. Biomed Res Int. 2014;2014:707691. doi:10.1155/2014/70769124868544
  • Pittet LF, Posfay-Barbe KM. Vaccination of immune compromised children-an overview for physicians. Eur J Pediatr. 2021;180(7):2035–2047. doi:10.1007/s00431-021-03997-133665677
  • Bader MS. Herpes zoster: diagnostic, therapeutic, and preventive approaches. Postgrad Med. 2013;125(5):78–91. doi:10.3810/pgm.2013.09.2703
  • Oktay K, Harvey BE, Partridge AH, et al. Fertility preservation in patients with cancer: ASCO clinical practice guideline update. J Clin Oncol. 2018;36(19):1994–2001. doi:10.1200/JCO.2018.78.191429620997
  • Byrne J, Fears TR, Gail MH, et al. Early menopause in long-term survivors of cancer during adolescence. Am J Obstet Gynecol. 1992;166(3):788–793. doi:10.1016/0002-9378(92)91335-81550144
  • Fauske L, Bondevik H, Bruland ØS, et al. Negative and positive consequences of cancer treatment experienced by long-term osteosarcoma survivors: a qualitative study. Anticancer Res. 2015;35(11):6081–6090.26504033
  • Edelmann MN, Daryani VM, Bishop MW, et al. Neurocognitive and patient-reported outcomes in adult survivors of childhood osteosarcoma. JAMA Oncol. 2016;2(2):201–208. doi:10.1001/jamaoncol.2015.439826583357
  • Holzer LA, Huyer N, Friesenbichler J, et al. Body image, self-esteem, and quality of life in patients with primary malignant bone tumors. Arch Orthop Trauma Surg. 2020;140(1):1–10. doi:10.1007/s00402-019-03205-831127406
  • Weschenfelder W, Gast-Froehlich S, Spiegel C, et al. Factors influencing quality of life, function, reintegration and participation after musculoskeletal tumour operations. BMC Cancer. 2020;20(1):351. doi:10.1186/s12885-020-06837-x32334563
  • van Waas M, Neggers SJ, van der Lelij AJ, et al. The metabolic syndrome in adult survivors of childhood cancer, a review. J Pediatr Hematol Oncol. 2010;32(3):171–179. doi:10.1097/MPH.0b013e3181d419c320186100
  • Chueh HW, Yoo JH. Metabolic syndrome induced by anticancer treatment in childhood cancer survivors. Ann Pediatr Endocrinol Metab. 2017;22(2):82–89. doi:10.6065/apem.2017.22.2.8228690985
  • Calaminus G, Jenney M, Hjorth L, et al. Quality of life of patients with osteosarcoma in the European American Osteosarcoma Study-1 (EURAMOS-1): development and implementation of a questionnaire substudy. JMIR Res Protoc. 2019;8(9):e14406. doi:10.2196/1440631573951
  • Omer N, Le Deley MC, Piperno-Neumann S, et al. Phase-II trials in osteosarcoma recurrences: a systematic review of past experience. Eur J Cancer. 2017;75:98–108. doi:10.1016/j.ejca.2017.01.0028219023
  • Gill J, Gorlick R. Advancing therapy for osteosarcoma. Nat Rev Clin Oncol. 2021;18(10):609–624. doi:10.1038/s41571-021-00519-834131316
  • Meyers PA. Muramyl tripeptide-phosphatidyl ethanolamine encapsulated in liposomes (L-MTP-PE) in the treatment of osteosarcoma. Adv Exp Med Biol. 2020;257:133–139. doi:10.1007/978-3-030-43032-0_11
  • Mifamurtide: osteosarcoma: ineffective and harmful. Prescrire Int. 2011;20(115):89.21648206
  • Chow EJ, Antal Z, Constine LS, et al. New agents, emerging late effects, and the development of precision survivorship. J Clin Oncol. 2018;36(21):2231–2240. doi:10.1200/JCO.2017.76.464729874142
  • Williams AM, Liu Q, Bhakta N, et al. Rethinking success in pediatric oncology: beyond 5-year survival. J Clin Oncol. 2021;39(20):2227–2231. doi:10.1200/JCO.20.0368133769834
  • Langer T, Stöhr W, Bielack S, et al. Late effects surveillance system for sarcoma patients. Pediatr. Blood Cancer. 2004, 42(4):373–9. doi:10.1002/pbc.10325