575
Views
10
CrossRef citations to date
0
Altmetric
Review

Current and Emerging Therapeutic Approaches for Extracranial Malignant Rhabdoid Tumors

, , , , , , ORCID Icon & show all
Pages 479-498 | Published online: 09 Feb 2022

References

  • Beckwith JB, Palmer NF. Histopathology and prognosis of Wilms tumors: results from the First National Wilms’ Tumor Study. Cancer. 1978;41(5):1937–1948. doi:10.1002/1097-0142(197805)41:5<1937::aid-cncr2820410538>3.0.co;2-u
  • Judkins AR, Mauger J, Ht A, Rorke LB, Biegel JA. Immunohistochemical analysis of hSNF5/INI1 in pediatric CNS neoplasms. Am J Surg Pathol. 2004;28(5):644–650. doi:10.1097/00000478-200405000-00013
  • Cancer statistics reports for the Germany. Available from: http://www.kinderkrebsregister.de/dkkr/ergebnisse/jahresberichte/jahresbericht-2019.html. Accessed January 11, 2022.
  • Brennan B, Stiller C, Bourdeaut F. Extracranial rhabdoid tumours: what we have learned so far and future directions. Lancet Oncol. 2013;14(8):e329–e336. doi:10.1016/S1470-2045(13)70088-3
  • Frühwald MC, Hasselblatt M, Nemes K, et al. Age and DNA methylation subgroup as potential independent risk factors for treatment stratification in children with atypical teratoid/rhabdoid tumors. Neuro Oncol. 2020;22(7):1006–1017. doi:10.1093/neuonc/noz244
  • Nemes K, Bens S, Kachanov D, et al. Clinical and genetic risk factors define two risk groups of extracranial malignant rhabdoid tumours (eMRT/RTK). Eur J Cancer. 2021;142:112–122. doi:10.1016/j.ejca.2020.10.004
  • Nakata K, Colombet M, Stiller CA, Pritchard-Jones K, Steliarova-Foucher E. Incidence of childhood renal tumours: an international population-based study. Int J Cancer. 2020;147(12):3313–3327. doi:10.1002/ijc.33147
  • Tomlinson GE, Breslow NE, Dome J, et al. Rhabdoid tumor of the kidney in the National Wilms’ Tumor Study: age at diagnosis as a prognostic factor. J Clin Oncol. 2005;23(30):7641–7645. doi:10.1200/JCO.2004.00.8110
  • van den Heuvel-eibrink MM, van Tinteren H, Rehorst H. Malignant rhabdoid tumours of the kidney (MRTKs), registered on recent SIOP protocols from 1993 to 2005: a report of the SIOP renal tumour study group. Pediatr Blood Cancer. 2011;56(5):733–737. doi:10.1002/pbc.22922
  • Brennan B, De Salvo GL, Orbach D, et al. Outcome of extracranial malignant rhabdoid tumours in children registered in the European Paediatric Soft Tissue Sarcoma Study Group Non-Rhabdomyosarcoma Soft Tissue Sarcoma 2005 Study-EpSSG NRSTS 2005. Eur J Cancer. 2016;60:69–82. doi:10.1016/j.ejca.2016.02.027
  • Hasselblatt M, Isken S, Linge A, et al. High-resolution genomic analysis suggests the absence of recurrent genomic alterations other than SMARCB1 aberrations in atypical teratoid/rhabdoid tumors. Genes Chromosomes Cancer. 2013;52(2):185–190. doi:10.1002/gcc.22018
  • Kieran MW, Roberts CW, Chi SN, et al. Absence of oncogenic canonical pathway mutations in aggressive pediatric rhabdoid tumors. Pediatr Blood Cancer. 2012;59(7):1155–1157. doi:10.1002/pbc.24315
  • Hasselblatt M, Nagel I, Oyen F, et al. SMARCA4-mutated atypical teratoid/rhabdoid tumors are associated with inherited germline alterations and poor prognosis. Acta Neuropathol. 2014;128(3):453–456. doi:10.1007/s00401-014-1323-x
  • Schneppenheim R, Fruhwald MC, Gesk S, et al. Germline nonsense mutation and somatic inactivation of SMARCA4/BRG1 in a family with rhabdoid tumor predisposition syndrome. Am J Hum Genet. 2010;86(2):279–284. doi:10.1016/j.ajhg.2010.01.013
  • Holsten T, Bens S, Oyen F, et al. Germline variants in SMARCB1 and other members of the BAF chromatin-remodeling complex across human disease entities: a meta-analysis. Eur J Hum Genet. 2018;26(8):1083–1093. doi:10.1038/s41431-018-0143-1
  • Wilson BG, Roberts CW. SWI/SNF nucleosome remodellers and cancer. Nat Rev Cancer. 2011;11(7):481–492. doi:10.1038/nrc3068
  • Tegeder I, Thiel K, Erkek S, et al. Functional relevance of genes predicted to be affected by epigenetic alterations in atypical teratoid/rhabdoid tumors. J Neurooncol. 2019;141(1):43–55. doi:10.1007/s11060-018-03018-6
  • Koelsche C, Stichel D, Griewank KG, et al. Genome-wide methylation profiling and copy number analysis in atypical fibroxanthomas and pleomorphic dermal sarcomas indicate a similar molecular phenotype. Clin Sarcoma Res. 2019;9:2. doi:10.1186/s13569-019-0113-6
  • Chun HE, Lim EL, Heravi-Moussavi A, et al. Genome-wide profiles of extra-cranial malignant rhabdoid tumors reveal heterogeneity and dysregulated developmental pathways. Cancer Cell. 2016;29(3):394–406. doi:10.1016/j.ccell.2016.02.009
  • Koelsche C, Schrimpf D, Stichel D, Sill M, Sahm F. Sarcoma classification by DNA methylation profiling. Nat Commun. 2021;12(1):498. doi:10.1038/s41467-020-20603-4
  • Johann PD, Erkek S, Zapatka M, et al. Atypical teratoid/rhabdoid tumors are comprised of three epigenetic subgroups with distinct enhancer landscapes. Cancer Cell. 2016;29(3):379–393. doi:10.1016/j.ccell.2016.02.001
  • Torchia J, Golbourn B, Feng S, et al. Integrated (epi)-genomic analyses identify subgroup-specific therapeutic targets in CNS rhabdoid tumors. Cancer Cell. 2016;30(6):891–908. doi:10.1016/j.ccell.2016.11.003
  • Chun HE, Johann PD, Milne K, et al. Identification and analyses of extra-cranial and cranial rhabdoid tumor molecular subgroups reveal tumors with cytotoxic T cell infiltration. Cell Rep. 2019;29(8):2338–2354.e7. doi:10.1016/j.celrep.2019.10.013
  • Birks DK, Donson AM, Patel PR, et al. High expression of BMP pathway genes distinguishes a subset of atypical teratoid/rhabdoid tumors associated with shorter survival. Neuro Oncol. 2011;13(12):1296–1307. doi:10.1093/neuonc/nor140
  • Birks DK, Donson AM, Patel PR, et al. Pediatric rhabdoid tumors of kidney and brain show many differences in gene expression but share dysregulation of cell cycle and epigenetic effector genes. Pediatr Blood Cancer. 2013;60(7):1095–1102. doi:10.1002/pbc.24481
  • Ho B, Johann PD, Grabovska Y, et al. Molecular subgrouping of atypical teratoid/rhabdoid tumors-a reinvestigation and current consensus. Neuro Oncol. 2020;22(5):613–624. doi:10.1093/neuonc/noz235
  • Brocks D, Schmidt CR, Daskalakis M, et al. DNMT and HDAC inhibitors induce cryptic transcription start sites encoded in long terminal repeats. Nat Genet. 2017;49(11):1661. doi:10.1038/ng.3889
  • Andrianteranagna M, Cyrta J, Masliah-Planchon J, et al. SMARCA4-deficient rhabdoid tumours show intermediate molecular features between SMARCB1-deficient rhabdoid tumours and small cell carcinomas of the ovary, hypercalcaemic type. J Pathol. 2021;255(1):1–15. doi:10.1002/path.5705
  • Alimova I, Pierce A, Danis E, et al. Inhibition of MYC attenuates tumor cell self-renewal and promotes senescence in SMARCB1-deficient Group 2 atypical teratoid rhabdoid tumors to suppress tumor growth in vivo. Int J Cancer. 2019;144(8):1983–1995. doi:10.1002/ijc.31873
  • Bourdeaut F, Lequin D, Brugières L, et al. Frequent hSNF5/INI1 germline mutations in patients with rhabdoid tumor. Clin Cancer Res. 2011;17(1):31–38. doi:10.1158/1078-0432.CCR-10-1795
  • Nemes K, Bens S, Bourdeaut F, et al. Rhabdoid tumor predisposition syndrome. Adam MP, Ardinger HH, Pagon RA, et al. editors. GeneReviews(®). Seattle: University of Washington, Seattle Copyright © 1993–2021, University of Washington, Seattle. GeneReviews is a registered trademark of the University of Washington, Seattle; 1993.
  • Sultan I, Qaddoumi I, Rodríguez-Galindo C, Nassan AA, Ghandour K, Al-Hussaini M. Age, stage, and radiotherapy, but not primary tumor site, affects the outcome of patients with malignant rhabdoid tumors. Pediatr Blood Cancer. 2010;54(1):35–40. doi:10.1002/pbc.22285
  • Venkatramani R, Shoureshi P, Malvar J, Zhou S, Mascarenhas L. High dose alkylator therapy for extracranial malignant rhabdoid tumors in children. Pediatr Blood Cancer. 2014;61(8):1357–1361. doi:10.1002/pbc.25093
  • Cheng H, Yang S, Cai S. Clinical and prognostic characteristics of 53 cases of extracranial malignant rhabdoid tumor in children. A single-institute experience from 2007 to 2017. Oncologist. 2019;24(7):e551–e558. doi:10.1634/theoncologist.2018-0416
  • Benesch M, Bartelheim K, Fleischhack G, et al. High-dose chemotherapy (HDCT) with auto-SCT in children with atypical teratoid/rhabdoid tumors (AT/RT): a report from the European Rhabdoid Registry (EU-RHAB). Bone Marrow Transplant. 2014;49(3):370–375. doi:10.1038/bmt.2013.208
  • Hoffman LM, Richardson EA, Ho B, et al. Advancing biology-based therapeutic approaches for atypical teratoid rhabdoid tumors. Neuro Oncol. 2020;22(7):944–954. doi:10.1093/neuonc/noaa046
  • Furtwängler R, Nourkami N, Alkassar M, et al. Update on relapses in unilateral nephroblastoma registered in 3 consecutive SIOP/GPOH studies - A report from the GPOH-nephroblastoma study group. Klin Padiatr. 2011;223(3):113–119. doi:10.1055/s-0031-1275293
  • Furtwängler R, Kager L, Melchior P, et al. High-dose treatment for malignant rhabdoid tumor of the kidney: no evidence for improved survival-The Gesellschaft für Pädiatrische Onkologie und Hämatologie (GPOH) experience. Pediatr Blood Cancer. 2018;65(1):e26746. doi:10.1002/pbc.26746
  • Melchior P, Dzierma Y, Rübe C, et al. Local stage dependent necessity of radiation therapy in rhabdoid tumors of the kidney (RTK). Int J Radiat Oncol Biol Phys. 2020;108(3):667–675. doi:10.1016/j.ijrobp.2020.04.046
  • Walz AL, Fernandez CV, Geller JI. Novel therapy for pediatric and adolescent kidney cancer. Cancer Metastasis Rev. 2019;38(4):643–655. doi:10.1007/s10555-019-09822-4
  • Unland R, Borchardt C, Clemens D, Kool M, Dirksen U, Frühwald MC. Analysis of the antiproliferative effects of 3-deazaneoplanocin A in combination with standard anticancer agents in rhabdoid tumor cell lines. Anticancer Drugs. 2015;26(3):301–311. doi:10.1097/CAD.0000000000000181
  • Li T, Wang J, Liu P, et al. Insulin-like growth factor 2 axis supports the serum-independent growth of malignant rhabdoid tumor and is activated by microenvironment stress. Oncotarget. 2017;8(29):47269–47283. doi:10.18632/oncotarget.17617
  • Jeibmann A, Schulz J, Eikmeier K, et al. SMAD dependent signaling plays a detrimental role in a fly model of SMARCB1-deficiency and the biology of atypical teratoid/rhabdoid tumors. J Neurooncol. 2017;131(3):477–484. doi:10.1007/s11060-016-2326-3
  • Weingart MF, Roth JJ, Hutt-Cabezas M, et al. Disrupting LIN28 in atypical teratoid rhabdoid tumors reveals the importance of the mitogen activated protein kinase pathway as a therapeutic target. Oncotarget. 2015;6(5):3165–3177. doi:10.18632/oncotarget.3078
  • Shahab S, Rubens J, Kaur H, Sweeney H, Eberhart CG, Raabe EH. MEK inhibition suppresses growth of atypical teratoid/rhabdoid tumors. J Neuropathol Exp Neurol. 2020;79(7):746–753. doi:10.1093/jnen/nlaa042
  • Rubens JA, Wang SZ, Price A, et al. The TORC1/2 inhibitor TAK228 sensitizes atypical teratoid rhabdoid tumors to cisplatin-induced cytotoxicity. Neuro Oncol. 2017;19(10):1361–1371. doi:10.1093/neuonc/nox067
  • Oberlick EM, Rees MG, Seashore-Ludlow B, et al. Small-molecule and CRISPR screening converge to reveal receptor tyrosine kinase dependencies in pediatric rhabdoid tumors. Cell Rep. 2019;28(9):2331–2344.e8. doi:10.1016/j.celrep.2019.07.021
  • Suri A, Bailey AW, Tavares MT. Evaluation of protein kinase inhibitors with PLK4 cross-over potential in a pre-clinical model of cancer. Int J Mol Sci. 2019;20(9):2112. doi:10.3390/ijms20092112
  • Singh A, Lun X, Jayanthan A, et al. Profiling pathway-specific novel therapeutics in preclinical assessment for central nervous system atypical teratoid rhabdoid tumors (CNS ATRT): favorable activity of targeting EGFR-ErbB2 signaling with lapatinib. Mol Oncol. 2013;7(3):497–512. doi:10.1016/j.molonc.2013.01.001
  • Alimova I, Pierce AM, Harris P, et al. Targeting Polo-like kinase 1 in SMARCB1 deleted atypical teratoid rhabdoid tumor. Oncotarget. 2017;8(57):97290–97303. doi:10.18632/oncotarget.21932
  • Sredni ST, Bailey AW, Suri A, et al. Inhibition of polo-like kinase 4 (PLK4): a new therapeutic option for rhabdoid tumors and pediatric medulloblastoma. Oncotarget. 2017;8(67):111190–111212. doi:10.18632/oncotarget.22704
  • Sredni ST, Suzuki M, Yang JP, et al. A functional screening of the kinome identifies the Polo-like kinase 4 as a potential therapeutic target for malignant rhabdoid tumors, and possibly, other embryonal tumors of the brain. Pediatr Blood Cancer. 2017;64(11):e26551. doi:10.1002/pbc.26551
  • Messerli SM, Hoffman MM, Gnimpieba EZ, Bhardwaj RD. Therapeutic targeting of PTK7 is cytotoxic in atypical teratoid rhabdoid tumors. Mol Cancer Res. 2017;15(8):973–983. doi:10.1158/1541-7786.MCR-16-0432
  • Obaid H, Kannappan S, Gupta M, et al. In vitro investigation demonstrates IGFR/VEGFR receptor cross talk and potential of combined inhibition in pediatric central nervous system atypical teratoid rhabdoid tumors. Curr Cancer Drug Targets. 2020;20(4):295–305. doi:10.2174/1568009619666191111153049
  • Chakravadhanula M, Hampton CN, Chodavadia P, et al. Wnt pathway in atypical teratoid rhabdoid tumors. Neuro Oncol. 2015;17(4):526–535. doi:10.1093/neuonc/nou229
  • Studebaker AW, Hutzen B, Pierson CR, Shaffer TA, Raffel C, Jackson EM. Oncolytic measles virus efficacy in murine xenograft models of atypical teratoid rhabdoid tumors. Neuro Oncol. 2015;17(12):1568–1577. doi:10.1093/neuonc/nov058
  • Lee YE, Choi SA, Kwack PA, et al. Repositioning disulfiram as a radiosensitizer against atypical teratoid/rhabdoid tumor. Neuro Oncol. 2017;19(8):1079–1087. doi:10.1093/neuonc/now300
  • Golan H, Shukrun R, Caspi R, et al. In vivo expansion of cancer stemness affords novel cancer stem cell targets: malignant rhabdoid tumor as an example. Stem Cell Rep. 2018;11(3):795–810. doi:10.1016/j.stemcr.2018.07.010
  • Yang YP, Nguyen PNN, Ma HI, et al. Tumor mesenchymal stromal cells regulate cell migration of atypical teratoid rhabdoid tumor through exosome-mediated miR155/SMARCA4 pathway. Cancers (Basel). 2019;11(5):720. doi:10.3390/cancers11050720
  • Howard TP, Arnoff TE, Song MR, Giacomelli AO. MDM2 and MDM4 are therapeutic vulnerabilities in malignant rhabdoid tumors. Cancer Res. 2019;79(9):2404–2414. doi:10.1158/0008-5472.CAN-18-3066
  • Nakano Y, Takadera M, Miyazaki M, et al. Drug screening with a novel tumor-derived cell line identified alternative therapeutic options for patients with atypical teratoid/rhabdoid tumor. Hum Cell. 2021;34(1):271–278. doi:10.1007/s13577-020-00438-3
  • Morin A, Soane C, Pierce A, et al. Proteasome inhibition as a therapeutic approach in atypical teratoid/rhabdoid tumors. Neurooncol Adv. 2020;2(1):vdaa051. doi:10.1093/noajnl/vdaa051
  • Tran HM, Wu KS, Sung SY. Upregulation of protein synthesis and proteasome degradation confers sensitivity to proteasome inhibitor bortezomib in Myc-atypical teratoid/rhabdoid tumors. Cancers (Basel). 2020;12(3):752. doi:10.3390/cancers12030752
  • Howard TP, Oberlick EM, Rees MG. Rhabdoid tumors are sensitive to the protein-translation inhibitor homoharringtonine. Clin Cancer Res. 2020;26(18):4995–5006. doi:10.1158/1078-0432.CCR-19-2717
  • Shibui Y, Kohashi K, Tamaki A, et al. The forkhead box M1 (FOXM1) expression and antitumor effect of FOXM1 inhibition in malignant rhabdoid tumor. J Cancer Res Clin Oncol. 2021;147(5):1499–1518. doi:10.1007/s00432-020-03438-w
  • Daifu T, Mikami M, Hiramatsu H, Iwai A, Umeda K. Suppression of malignant rhabdoid tumors through Chb-M’-mediated RUNX1 inhibition. Pediatr Blood Cancer. 2020;68(2):e28789. doi:10.1002/pbc.28789
  • Marsh IR, Grudzinski J, Baiu DC, et al. Preclinical pharmacokinetics and dosimetry studies of (124)I/(131) I-CLR1404 for treatment of pediatric solid tumors in murine xenograft models. J Nucl Med. 2019;60(10):1414–1420. doi:10.2967/jnumed.118.225409
  • Krämer KF, Moreno N, Frühwald MC, Kerl K. BRD9 inhibition, alone or in combination with cytostatic compounds as a therapeutic approach in rhabdoid tumors. Int J Mol Sci. 2017;18(7):1537. doi:10.3390/ijms18071537
  • Michel BC, D’Avino AR, Cassel SH, et al. A non-canonical SWI/SNF complex is a synthetic lethal target in cancers driven by BAF complex perturbation. Nat Cell Biol. 2018;20(12):1410–1420. doi:10.1038/s41556-018-0221-1
  • Kim KH, Roberts CW. Mechanisms by which SMARCB1 loss drives rhabdoid tumor growth. Cancer Genet. 2014;207(9):365–372. doi:10.1016/j.cancergen.2014.04.004
  • Carugo A, Minelli R, Sapio L, et al. p53 is a master regulator of proteostasis in SMARCB1-deficient malignant rhabdoid tumors. Cancer Cell. 2019;35(2):204–220.e9. doi:10.1016/j.ccell.2019.01.006
  • Perla A, Fratini L, Cardoso PS, et al. Histone deacetylase inhibitors in pediatric brain cancers: biological activities and therapeutic potential. Front Cell Dev Biol. 2020;8:546. doi:10.3389/fcell.2020.00546
  • Kerl K, Ries D, Unland R, et al. The histone deacetylase inhibitor SAHA acts in synergism with fenretinide and doxorubicin to control growth of rhabdoid tumor cells. BMC Cancer. 2013;13:286. doi:10.1186/1471-2407-13-286
  • Muscat A, Popovski D, Jayasekara WS, et al. Low-dose histone deacetylase inhibitor treatment leads to tumor growth arrest and multi-lineage differentiation of malignant rhabdoid tumors. Clin Cancer Res. 2016;22(14):3560–3570. doi:10.1158/1078-0432.CCR-15-2260
  • Custers L, Khabirova E, Coorens THH. Somatic mutations and single-cell transcriptomes reveal the root of malignant rhabdoid tumours. Nat Commun. 2021;12(1):1407. doi:10.1038/s41467-021-21675-6
  • Hoffman MM, Zylla JS, Bhattacharya S, et al. Analysis of dual class I histone deacetylase and lysine demethylase inhibitor domatinostat (4SC-202) on growth and cellular and genomic landscape of atypical teratoid/rhabdoid. Cancers (Basel). 2020;12(3):756. doi:10.3390/cancers12030756
  • Sugimoto Y, Katsumi Y, Iehara T. The novel histone deacetylase inhibitor, OBP-801, induces apoptosis in rhabdoid tumors by releasing the silencing of NOXA. Mol Cancer Ther. 2020;19(10):1992–2000. doi:10.1158/1535-7163.MCT-20-0243
  • Knipstein JA, Birks DK, Donson AM, Alimova I, Foreman NK, Vibhakar R. Histone deacetylase inhibition decreases proliferation and potentiates the effect of ionizing radiation in atypical teratoid/rhabdoid tumor cells. Neuro Oncol. 2012;14(2):175–183. doi:10.1093/neuonc/nor208
  • Thiemann M, Oertel S, Ehemann V, et al. In vivo efficacy of the histone deacetylase inhibitor suberoylanilide hydroxamic acid in combination with radiotherapy in a malignant rhabdoid tumor mouse model. Radiat Oncol. 2012;7:52. doi:10.1186/1748-717X-7-52
  • Muscal JA, Thompson PA, Horton TM, et al. A phase I trial of vorinostat and bortezomib in children with refractory or recurrent solid tumors: a Children’s Oncology Group phase I consortium study (ADVL0916). Pediatr Blood Cancer. 2013;60(3):390–395. doi:10.1002/pbc.24271
  • Fouladi M, Park JR, Stewart CF, et al. Pediatric phase I trial and pharmacokinetic study of vorinostat: a Children’s Oncology Group phase I consortium report. J Clin Oncol. 2010;28(22):3623–3629. doi:10.1200/JCO.2009.25.9119
  • Su JM, Thompson P, Ou CN, et al. Phase 1 study of valproic acid in pediatric patients with refractory solid or CNS tumors: a children’s oncology group report. Clin Cancer Res. 2011;17(3):589–597. doi:10.1158/1078-0432.CCR-10-0738
  • Yan W, Herman JG, Guo M. Epigenome-based personalized medicine in human cancer. Epigenomics. 2016;8(1):119–133. doi:10.2217/epi.15.84
  • George RE, Lahti JM, Adamson PC, et al. Phase I study of decitabine with doxorubicin and cyclophosphamide in children with neuroblastoma and other solid tumors: a Children’s Oncology Group study. Pediatr Blood Cancer. 2010;55(4):629–638. doi:10.1002/pbc.22607
  • Margueron R, Reinberg D. The Polycomb complex PRC2 and its mark in life. Nature. 2011;469(7330):343–349. doi:10.1038/nature09784
  • Kim KH, Roberts CW. Targeting EZH2 in cancer. Nat Med. 2016;22(2):128–134. doi:10.1038/nm.4036
  • Alimova I, Birks DK, Harris PS, et al. Inhibition of EZH2 suppresses self-renewal and induces radiation sensitivity in atypical rhabdoid teratoid tumor cells. Neuro Oncol. 2013;15(2):149–160. doi:10.1093/neuonc/nos285
  • Kurmasheva RT, Sammons M, Favours E, et al. Initial testing (stage 1) of tazemetostat (EPZ-6438), a novel EZH2 inhibitor, by the pediatric preclinical testing program. Pediatr Blood Cancer. 2017;64(3):e26218. doi:10.1002/pbc.26218
  • Kurmasheva RT, Erickson SW, Earley E, Smith MA, Houghton PJ. In vivo evaluation of the EZH2 inhibitor (EPZ011989) alone or in combination with standard of care cytotoxic agents against pediatric malignant rhabdoid tumor preclinical models-A report from the Pediatric Preclinical Testing Consortium. Pediatr Blood Cancer. 2021;68(2):e28772. doi:10.1002/pbc.28772
  • Italiano A, Soria JC, Toulmonde M, et al. Tazemetostat, an EZH2 inhibitor, in relapsed or refractory B-cell non-Hodgkin lymphoma and advanced solid tumours: a first-in-human, open-label, phase 1 study. Lancet Oncol. 2018;19(5):649–659. doi:10.1016/S1470-2045(18)30145-1
  • Chi NS, Bourdeaut F, Laetsch TW et al. Phase 1 Study of Tazemetostat, an Enhancer of Zeste Homolog-2 Inhibitor, Pediatric Patients With Relapsed/Refractory Integrase Interacor 1-Negative Tumors. ASCO 2020. Available from: https://www.epizyme.com/wp-content/uploads/2021/06/EZH-102_ASCO-2020_Poster_Final.pdf. Accessed January 11, 2022.
  • Kohashi K, Oda Y. Oncogenic roles of SMARCB1/INI1 and its deficient tumors. Cancer Sci. 2017;108(4):547–552. doi:10.1111/cas.13173
  • Cimica V, Smith ME, Zhang Z, Mathur D, Mani S, Kalpana GV. Potent inhibition of rhabdoid tumor cells by combination of flavopiridol and 4OH-tamoxifen. BMC Cancer. 2010;10:634. doi:10.1186/1471-2407-10-634
  • Hashizume R, Zhang A, Mueller S, et al. Inhibition of DNA damage repair by the CDK4/6 inhibitor palbociclib delays irradiated intracranial atypical teratoid rhabdoid tumor and glioblastoma xenograft regrowth. Neuro Oncol. 2016;18(11):1519–1528. doi:10.1093/neuonc/now106.euro-oncology
  • Geoerger B, Bourdeaut F, DuBois SG, et al. A phase I study of the CDK4/6 inhibitor ribociclib (LEE011) in pediatric patients with malignant rhabdoid tumors, neuroblastoma, and other solid tumors. Clin Cancer Res. 2017;23(10):2433–2441. doi:10.1158/1078-0432.CCR-16-2898
  • Maris JM, Morton CL, Gorlick R, et al. Initial testing of the Aurora kinase A inhibitor MLN8237 by the Pediatric Preclinical Testing Program (PPTP). Pediatr Blood Cancer. 2010;55(1):26–34. doi:10.1002/pbc.22430
  • Venkataraman S, Alimova I, Tello T, et al. Targeting Aurora Kinase A enhances radiation sensitivity of atypical teratoid rhabdoid tumor cells. J Neurooncol. 2012;107(3):517–526. doi:10.1007/s11060-011-0795-y
  • Wetmore C, Boyett J, Li S, et al. Alisertib is active as single agent in recurrent atypical teratoid rhabdoid tumors in 4 children. Neuro Oncol. 2015;17(6):882–888. doi:10.1093/neuonc/nov017
  • Mossé YP, Fox E, Teachey DT. A phase II study of alisertib in children with recurrent/refractory solid tumors or leukemia: children’s oncology group phase I and pilot consortium (ADVL0921). Clin Cancer Res. 2019;25(11):3229–3238. doi:10.1158/1078-0432.CCR-18-2675
  • Davis SL, Ionkina AA, Bagby SM, Orth JD, Gittleman B. Preclinical and dose-finding phase I trial results of combined treatment with a TORC1/2 inhibitor (TAK-228) and Aurora A kinase inhibitor (alisertib) in solid tumors. Clin Cancer Res. 2020;26(17):4633–4642. doi:10.1158/1078-0432.CCR-19-3498
  • Upadhyaya S, Campagne O, Robinson GW. Phase II study of alisertib as a single agent in recurrent or progressive atypical teratoid rhabdoid tumors. J Clin Oncol. 2020;38(15_suppl):10542. doi:10.1200/JCO.2020.38.15_suppl.10542
  • Wedekind MF, Denton NL, Chen CY, Cripe TP. Pediatric cancer immunotherapy: opportunities and challenges. Paediatr Drugs. 2018;20(5):395–408. doi:10.1007/s40272-018-0297-x
  • Michot JM, Bigenwald C, Champiat S, et al. Immune-related adverse events with immune checkpoint blockade: a comprehensive review. Eur J Cancer. 2016;54:139–148. doi:10.1016/j.ejca.2015.11.016
  • Binnewies M, Roberts EW, Kersten K, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med. 2018;24(5):541–550. doi:10.1038/s41591-018-0014-x
  • Hirata E, Sahai E. Tumor microenvironment and differential responses to therapy. Cold Spring Harb Perspect Med. 2017;7(7):a026781. doi:10.1101/cshperspect.a026781
  • Grabovska Y, Mackay A, O’Hare P, Crosier S, Finetti M. Pediatric pan-central nervous system tumor analysis of immune-cell infiltration identifies correlates of antitumor immunity. Nat Commun. 2020;11(1):4324. doi:10.1038/s41467-020-18070-y
  • Petralia F, Tignor N, Reva B, et al. Integrated proteogenomic characterization across major histological types of pediatric brain cancer. Cell. 2020;183(7):1962–1985.e31. doi:10.1016/j.cell.2020.10.044
  • Samstein RM, Lee CH, Shoushtari AN. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat Genet. 2019;51(2):202–206. doi:10.1038/s41588-018-0312-8
  • Gröbner SN, Worst BC, Weischenfeldt J, et al. The landscape of genomic alterations across childhood cancers. Nature. 2018;555(7696):321–327. doi:10.1038/nature25480
  • Yarmarkovich M, Maris JM. When cold is hot: immune checkpoint inhibition therapy for rhabdoid tumors. Cancer Cell. 2019;36(6):575–576. doi:10.1016/j.ccell.2019.11.006
  • Leruste A, Tosello J, Ramos RN, et al. Clonally expanded T cells reveal immunogenicity of rhabdoid tumors. Cancer Cell. 2019;36(6):597–612.e8. doi:10.1016/j.ccell.2019.10.008
  • Bourdeaut F, Thaku MD, Bergthold G, Karski E. ATRT-11. Marked response to Atezolizumab in a patient with rhabdoid tumor: a case study from the imatrix-atezolizumab trial. Neuro-Oncology. 2017;19(Suppl4):iv3. doi:10.1093/neuonc/nox083.010
  • Geoerger B, Zwaan CM, Marshall LV, et al. Atezolizumab for children and young adults with previously treated solid tumours, non-Hodgkin lymphoma, and Hodgkin lymphoma (iMATRIX): a multicentre phase 1–2 study. Lancet Oncol. 2020;21(1):134–144. doi:10.1016/S1470-2045(19)30693-X
  • Geoerger B, Kang HJ, Yalon-Oren M, et al. Pembrolizumab in paediatric patients with advanced melanoma or a PD-L1-positive, advanced, relapsed, or refractory solid tumour or lymphoma (KEYNOTE-051): interim analysis of an open-label, single-arm, phase 1–2 trial. Lancet Oncol. 2020;21(1):121–133. doi:10.1016/S1470-2045(19)30671-0
  • Hoppmann A, Williams AP, Coleman A, et al. Partial response to carboplatin, etoposide phosphate, and atezolizumab in a pediatric patient with high-grade metastatic tumor with rhabdoid and focal neuroendocrine features. Pediatr Blood Cancer. 2020;67(2):e28048. doi:10.1002/pbc.28048
  • Morrissey KM, Yuraszeck TM, Li CC, Zhang Y, Kasichayanula S. Immunotherapy and novel combinations in oncology: current landscape, challenges, and opportunities. Clin Transl Sci. 2016;9(2):89–104. doi:10.1111/cts.12391
  • Wang D, Quiros J, Mahuron K, et al. Targeting EZH2 reprograms intratumoral regulatory T cells to enhance cancer immunity. Cell Rep. 2018;23(11):3262–3274. doi:10.1016/j.celrep.2018.05.050
  • Goel S, DeCristo MJ, Watt AC, et al. CDK4/6 inhibition triggers anti-tumour immunity. Nature. 2017;548(7668):471–475. doi:10.1038/nature23465
  • Leruste A, Chauvin C, Pouponnot C, Bourdeaut F, Waterfall JJ. Immune responses in genomically simple SWI/SNF-deficient cancers. Nature. 2017;548(7668):471–475. doi:10.1038/nature23465
  • Majzner RG, Theruvath JL, Nellan A, et al. CAR T cells targeting B7-H3, a pan-cancer antigen, demonstrate potent preclinical activity against pediatric solid tumors and brain tumors. Clin Cancer Res. 2019;25(8):2560–2574. doi:10.1158/1078-0432.CCR-18-0432
  • Du H, Hirabayashi K, Ahn S, et al. Antitumor responses in the absence of toxicity in solid tumors by targeting B7-H3 via chimeric antigen receptor T cells. Cancer Cell. 2019;35(2):221–237.e8. doi:10.1016/j.ccell.2019.01.002
  • Theruvath J, Sotillo E, Mount CW, et al. Locoregionally administered B7-H3-targeted CAR T cells for treatment of atypical teratoid/rhabdoid tumors. Nat Med. 2020;26(5):712–719. doi:10.1038/s41591-020-0821-8
  • Chauvin C, Leruste A, Tauziede-Espariat A, et al. High-throughput drug screening identifies pazopanib and clofilium tosylate as promising treatments for malignant rhabdoid tumors. Cell Rep. 2017;21(7):1737–1745. doi:10.1016/j.celrep.2017.10.076
  • Wong JP, Todd JR, Finetti MA, et al. Dual targeting of PDGFRα and FGFR1 displays synergistic efficacy in malignant rhabdoid tumors. Cell Rep. 2016;17(5):1265–1275. doi:10.1016/j.celrep.2016.10.005