136
Views
3
CrossRef citations to date
0
Altmetric
Review

WNT5a in Colorectal Cancer: Research Progress and Challenges

, , , , &
Pages 2483-2498 | Published online: 16 Mar 2021

References

  • Haggar FA, Boushey RP. Colorectal cancer epidemiology: incidence, mortality, survival, and risk factors. Clin Colon Rectal Surg. 2009;22(04):191–197. doi:10.1055/s-0029-124245821037809
  • Grizzi F, Bianchi P, Malesci A, Laghi L. Prognostic value of innate and adaptive immunity in colorectal cancer. World J Gastroenterol. 2013;19:174–184. doi:10.3748/wjg.v19.i2.17423345940
  • Johnson CM, Wei C, Ensor JE, et al. Meta-analyses of colorectal cancer risk factors. Cancer Causes Control. 2013;24(6):1207–1222. doi:10.1007/s10552-013-0201-523563998
  • Mengual-Ballester M, Pellicer-Franco E, Valero-Navarro G, Soria-Aledo V, Garcia-Marin JA, Aguayo-Albasini JL. Increased survival and decreased recurrence in colorectal cancer patients diagnosed in a screening programme. Cancer Epidemiol. 2016;43:70–75. doi:10.1016/j.canep.2016.06.00327399311
  • Hubner J, Lewin P, Pritzkuleit R, Eisemann N, Maier W, Katalinic A. Colorectal cancer screening by colonoscopy and trends in disease-specific mortality: a population-based ecological study of 358 German districts. Int J Colorectal Dis. 2019;34(4):599–605. doi:10.1007/s00384-018-03226-630627848
  • Schweiger MR, Hussong M, Rohr C, Lehrach H. Genomics and epigenomics of colorectal cancer. Wiley Interdiscip Rev Syst Biol Med. 2013;5:205–219.23325509
  • Guinney J, Dienstmann R, Wang X, et al. The consensus molecular subtypes of colorectal cancer. Nat Med. 2015;21:1350–1356.26457759
  • Jasperson KW, Tuohy TM, Neklason DW, Burt RW. Hereditary and familial colon cancer. Gastroenterology. 2010;138:2044–2058.20420945
  • Bodmer WF, Bailey CJ, Bodmer J, et al. Localization of the gene for familial adenomatous polyposis on chromosome 5. Nature. 1987;328:614–616.3039373
  • Cancer Genome Atlas N. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487:330–337.22810696
  • Nusse R, Varmus HE. WNT genes. Cell. 1992;69(7):1073–1087. doi:10.1016/0092-8674(92)90630-U1617723
  • Kumawat K, Gosens R. WNT-5a: signaling and functions in health and disease. Cell Mol Life Sci. 2016;73(3):567–587. doi:10.1007/s00018-015-2076-y26514730
  • Clark CC, Cohen I, Eichstetter I, et al. Molecular cloning of the human proto-oncogene WNT-5a and mapping of the gene (WNT5a) to chromosome 3p14-p21. Genomics. 1993;18(2):249–260. doi:10.1006/geno.1993.14638288227
  • Willert K, Nusse R. WNT proteins. Cold Spring Harb Perspect Biol. 2012;4(9):a007864. doi:10.1101/cshperspect.a00786422952392
  • Wong GT, Gavin BJ, McMahon AP. Differential transformation of mammary epithelial cells by WNT genes. Mol Cell Biol. 1994;14:6278–6286. doi:10.1128/MCB.14.9.62788065359
  • Shimizu H, Julius MA, Giarre M, Zheng Z, Brown AM, Kitajewski J. Transformation by WNT family proteins correlates with regulation of beta-catenin. Cell Growth Differ. 1997;8(12):1349–1358.9419423
  • Jiang W, Crossman DK, Mitchell EH, Sohn P, Crowley MR, Serra R. WNT5a inhibits metastasis and alters splicing of Cd44 in breast cancer cells. PLoS One. 2013;8(3):e58329. doi:10.1371/journal.pone.005832923484019
  • Latres E, Chiaur DS, Pagano M. The human F box protein beta-Trcp associates with the Cul1/Skp1 complex and regulates the stability of beta-catenin. Oncogene. 1999;18:849–854. doi:10.1038/sj.onc.120265310023660
  • Metcalfe C, Mendoza-Topaz C, Mieszczanek J, Bienz M. Stability elements in the LRP6 cytoplasmic tail confer efficient signalling upon DIX-dependent polymerization. J Cell Sci. 2010;123(9):1588–1599. doi:10.1242/jcs.06754620388731
  • Clevers H. WNT/Beta-catenin signaling in development and disease. Cell. 2006;127(3):469–480. doi:10.1016/j.cell.2006.10.01817081971
  • MacDonald BT, Tamai K, He X. WNT/β-catenin signaling: components, mechanisms, and diseases. Dev Cell. 2009;17:9–26. doi:10.1016/j.devcel.2009.06.01619619488
  • Tree DRP, Shulman JM, Scott MP, Gubb D, Axelrod JD. Prickle mediates feedback amplification to generate asymmetric planar cell polarity signaling. Cell. 2002;109:371–381. doi:10.1016/S0092-8674(02)00715-812015986
  • Habas R, Kato Y, He X. WNT/frizzled activation of Rho regulates vertebrate gastrulation and requires a novel formin homology protein Daam1. Cell. 2001;107(7):843–854. doi:10.1016/S0092-8674(01)00614-611779461
  • Kikuchi A, Yamamoto H, Sato A, Matsumoto S. New insights into the mechanism of WNT signaling pathway activation. Int Rev Cell Mol Biol. 2011;291:21–71.22017973
  • Gao B, Song H, Bishop K, et al. WNT signaling gradients establish planar cell polarity by inducing Vangl2 phosphorylation through Ror2. Dev Cell. 2011;20(2):163–176. doi:10.1016/j.devcel.2011.01.00121316585
  • Gao C, Chen Y. Dishevelled: the hub of WNT signaling. Cell Signal. 2010;22(5):717–727. doi:10.1016/j.cellsig.2009.11.02120006983
  • Sheldahl LC, Slusarski DC, Pandur P, Miller JR, Kuhl M, Moon RT. Dishevelled activates Ca2+ flux, PKC, and CamKII in vertebrate embryos. J Cell Biol. 2003;161(4):769–777. doi:10.1083/jcb.20021109412771126
  • Albuquerque C, Baltazar C, Filipe B, et al. Colorectal cancers show distinct mutation spectra in members of the canonical WNT signaling pathway according to their anatomical location and type of genetic instability. Genes Chromosomes Cancer. 2010;49(8):746–759. doi:10.1002/gcc.2078620544848
  • Bauer M, Benard J, Gaasterland T, Willert K, Cappellen D. WNT5a encodes two isoforms with distinct functions in cancers. PLoS One. 2013;8:e80526. doi:10.1371/journal.pone.008052624260410
  • Danielson KG, Pillarisetti J, Cohen IR, et al. Characterization of the complete genomic structure of the human WNT-5a gene, functional analysis of its promoter, chromosomal mapping, and expression in early human embryogenesis. J Biol Chem. 1995;270:31225–31234. doi:10.1074/jbc.270.52.312258537388
  • Katula KS, Joyner-Powell NB, Hsu CC, Kuk A. Differential Regulation of the Mouse and Human Wnt5a Alternative Promoters A and B. DNA Cell Biol. 2012;31(11):1585–1597. doi:10.1089/dna.2012.169823046419
  • Mikels AJ, Nusse R. Purified WNT5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context. PLoS Biol. 2006;4:e115. doi:10.1371/journal.pbio.004011516602827
  • Qian D, Jones C, Rzadzinska A, et al. WNT5a functions in planar cell polarity regulation in mice. Dev Biol. 2007;306:121–133. doi:10.1016/j.ydbio.2007.03.01117433286
  • Endo M, Nishita M, Minami Y. Analysis of WNT/planar cell polarity pathway in cultured cells. Methods Mol Biol. 2012;839:201–214.22218903
  • MacMillan CD, Leong HS, Dales DW, et al. Stage of breast cancer progression influences cellular response to activation of the WNT/planar cell polarity pathway. Sci Rep. 2014. doi:10.1038/srep06315
  • Al-Shawi R, Ashton SV, Underwood C, Simons JP. Expression of the Ror1 and Ror2 receptor tyrosine kinase genes during mouse development. Dev Genes Evol. 2001;211(4):161–171. doi:10.1007/s00427010014011455430
  • Klaus A, Birchmeier W. WNT signalling and its impact on development and cancer. Nat Rev Cancer. 2008;8:387–398.18432252
  • Slusarski DC, Yang-Snyder J, Busa WB, Moon RT. Modulation of embryonic intracellular Ca2+ signaling by WNT-5a. Dev Biol. 1997;182(1):114–120. doi:10.1006/dbio.1996.84639073455
  • Kuhl M, Sheldahl LC, Park M, Miller JR, Moon RT. The WNT/Ca2+ pathway: a new vertebrate WNT signaling pathway takes shape. Trends Genet. 2000;16:279–283.10858654
  • Kuhl M, Sheldahl LC, Malbon CC, Moon RT. Ca2+/calmodulin-dependent protein kinase II is stimulated by WNT and frizzled homologs and promotes ventral cell fates in Xenopus. J Biol Chem. 2000;275(17):12701–12711. doi:10.1074/jbc.275.17.1270110777564
  • Thrasivoulou C, Millar M, Ahmed A. Activation of intracellular calcium by multiple WNT ligands and translocation of β-catenin into the nucleus: a convergent model of WNT/Ca2+ and WNT/β-catenin pathways. J Biol Chem. 2013;288(50):35651–35659. doi:10.1074/jbc.M112.43791324158438
  • Bhatt PM, Malgor R. WNT5a: a player in the pathogenesis of atherosclerosis and other inflammatory disorders. Atherosclerosis. 2014;237(1):155–162. doi:10.1016/j.atherosclerosis.2014.08.02725240110
  • Topol L, Jiang X, Choi H, et al. WNT-5a inhibits the canonical WNT pathway by promoting GSK-3–independent β-catenin degradation. J Cell Biol. 2003;162(5):899–908. doi:10.1083/jcb.20030315812952940
  • McDonald SL, Silver A. The opposing roles of WNT-5a in cancer. Br J Cancer. 2009;101(2):209–214. doi:10.1038/sj.bjc.660517419603030
  • Bakker ER, Das AM, Helvensteijn W, et al. WNT5a promotes human colon cancer cell migration and invasion but does not augment intestinal tumorigenesis in Apc1638N mice. Carcinogenesis. 2013;34(11):2629–2638. doi:10.1093/carcin/bgt21523764752
  • Huang TC, Lee PT, Wu MH, et al. Distinct roles and differential expression levels of WNT5a mRNA isoforms in colorectal cancer cells. PLoS One. 2017;12:e0181034. doi:10.1371/journal.pone.018103428859077
  • Ying J, Li H, Yu J, et al. WNT5a exhibits tumor-suppressive activity through antagonizing the WNT/beta-catenin signaling, and is frequently methylated in colorectal cancer. Clin Cancer Res. 2008;14:55–61. doi:10.1158/1078-0432.CCR-07-164418172252
  • Cheng R, Sun B, Liu Z, et al. WNT5a suppresses colon cancer by inhibiting cell proliferation and epithelial-mesenchymal transition. J Cell Physiol. 2014;229(12):1908–1917. doi:10.1002/jcp.2456624464650
  • Qiu Q, Li Y, Fan Z, et al. Gene Expression Analysis of Human Papillomavirus-Associated Colorectal Carcinoma. Biomed Res Int. 2020;2020:5201587. doi:10.1155/2020/520158732258125
  • Ki DH, Jeung HC, Park CH, et al. Whole genome analysis for liver metastasis gene signatures in colorectal cancer. Int J Cancer. 2007;121(9):2005–2012. doi:10.1002/ijc.2297517640062
  • Barski A, Cuddapah S, Cui K, et al. High-resolution profiling of histone methylations in the human genome. Cell. 2007;129(4):823–837. doi:10.1016/j.cell.2007.05.00917512414
  • Li Q, Chen H. Silencing of Wnt5a during colon cancer metastasis involves histone modifications. Epigenetics. 2012;7(6):551–558. doi:10.4161/epi.2005022522911
  • Belharazem D, Magdeburg J, Berton AK, et al. Carcinoma of the colon and rectum with deregulation of insulin-like growth factor 2 signaling: clinical and molecular implications. J Gastroenterol. 2016;51(10):971–984. doi:10.1007/s00535-016-1181-526984550
  • Issa JP. CpG island methylator phenotype in cancer. Nat Rev Cancer. 2004;4(12):988–993. doi:10.1038/nrc150715573120
  • Galamb O, Kalmar A, Peterfia B, et al. Aberrant DNA methylation of WNT pathway genes in the development and progression of CIMP-negative colorectal cancer. Epigenetics. 2016;11:588–602. doi:10.1080/15592294.2016.119089427245242
  • MacLeod RJ. Extracellular calcium-sensing receptor/PTH knockout mice colons have increased WNT/beta-catenin signaling, reduced non-canonical WNT signaling, and increased susceptibility to azoxymethane-induced aberrant crypt foci. Lab Invest. 2013;93(5):520–527. doi:10.1038/labinvest.2013.5123545937
  • Holcombe RF, Marsh JL, Waterman ML, Lin F, Milovanovic T, Truong T. Expression of WNT ligands and Frizzled receptors in colonic mucosa and in colon carcinoma. Mol Pathol. 2002;55(4):220–226. doi:10.1136/mp.55.4.22012147710
  • Wang Z, Chen H. Amino acid limitation induces down-regulation of WNT5a at transcriptional level. Biochem Biophys Res Commun. 2009;378(4):789–794. doi:10.1016/j.bbrc.2008.11.12419063862
  • Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19(11):1423–1437. doi:10.1038/nm.339424202395
  • Lopez-Soto A, Gonzalez S, Smyth MJ, Galluzzi L. Control of Metastasis by NK Cells. Cancer Cell. 2017;32:135–154.28810142
  • Jiang Y, Li Y, Zhu B. T-cell exhaustion in the tumor microenvironment. Cell Death Dis. 2015;6:e1792.26086965
  • Noy R, Pollard JW. Tumor-associated macrophages: from mechanisms to therapy. Immunity. 2014;41:49–61.25035953
  • Condeelis J, Pollard JW. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell. 2006;124:263–266.16439202
  • Liu Q, Yang C, Wang S, et al. WNT5a-induced M2 polarization of tumor-associated macrophages via IL-10 promotes colorectal cancer progression. Cell Commun Signal. 2020;18:51.32228612
  • Halasi M, Gartel AL. FOX(M1) news–it is cancer. Mol Cancer Ther. 2013;12(3):245–254.23443798
  • Zhou Z, Chen H, Xie R, et al. Epigenetically modulated FOXM1 suppresses dendritic cell maturation in pancreatic cancer and colon cancer. Mol Oncol. 2019;13:873–893.30628173
  • Valenzuela A, Morgado N. Trans fatty acid isomers in human health and in the food industry. Biol Res. 1999;32:273–287.10983247
  • Fujii K, Luo Y, Fujiwara-Tani R, et al. Pro-metastatic intracellular signaling of the elaidic trans fatty acid. Int J Oncol. 2017;50:85–92.27959384
  • Hsu CM, Lin PM, Wang YM, Chen ZJ, Lin SF, Yang MY. Circulating miRNA is a novel marker for head and neck squamous cell carcinoma. Tumour Biol. 2012;33:1933–1942.22811001
  • Benderska N, Dittrich AL, Knaup S, et al. miRNA-26b overexpression in ulcerative colitis-associated carcinogenesis. Inflamm Bowel Dis. 2015;21:2039–2051.26083618
  • Zhang C, Tong J, Huang G. Nicotinamide phosphoribosyl transferase (Nampt) is a target of microRNA-26b in colorectal cancer cells. PLoS One. 2013;8:e69963.23922874
  • Fan D, Lin X, Zhang F, et al. MicroRNA 26b promotes colorectal cancer metastasis by down regulating phosphatase and tensin homolog and wingless-type MMTV integration site family member 5a. Cancer Sci. 2018;109:354–362.29160937
  • Medrek C, Landberg G, Andersson T, Leandersson K. WNT-5a-CKI{alpha} signaling promotes {beta}-catenin/E-cadherin complex formation and intercellular adhesion in human breast epithelial cells. J Biol Chem. 2009;284:10968–10979.19244247
  • Ma X, Meng Z, Jin L, et al. CAMK2gamma in intestinal epithelial cells modulates colitis-associated colorectal carcinogenesis via enhancing STAT3 activation. Oncogene. 2017;36:4060–4071.28319059
  • Tobimatsu T, Fujisawa H. Tissue-specific expression of four types of rat calmodulin-dependent protein kinase II mRNAs. J Biol Chem. 1989;264:17907–17912.2553697
  • Bui JD, Calbo S, Hayden-Martinez K, Kane LP, Gardner P, Hedrick SM. A role for CaMKII in T cell memory. Cell. 2000;100:457–467.10693762
  • Huang W, Ghisletti S, Saijo K, et al. Coronin 2A mediates actin-dependent de-repression of inflammatory response genes. Nature. 2011;470:414–418.21331046
  • Timmins JM, Ozcan L, Seimon TA, et al. Calcium/calmodulin-dependent protein kinase II links ER stress with Fas and mitochondrial apoptosis pathways. J Clin Invest. 2009;119:2925–2941.19741297
  • Bian Y, Chang X, Liao Y, et al. Promotion of epithelial-mesenchymal transition by Frizzled2 is involved in the metastasis of endometrial cancer. Oncol Rep. 2016;36(2):803–810.27373314
  • Gujral TS, Chan M, Peshkin L, Sorger PK, Kirschner MW, MacBeath G. A noncanonical Frizzled2 pathway regulates epithelial-mesenchymal transition and metastasis. Cell. 2014;159:844–856.25417160
  • Maman S, Witz IP. A history of exploring cancer in context. Nat Rev Cancer. 2018;18:359–376.29700396
  • Vitale I, Manic G, Coussens LM, Kroemer G, Galluzzi L. Macrophages and Metabolism in the Tumor Microenvironment. Cell Metab. 2019;30:36–50.31269428
  • Ruffell B, Affara NI, Coussens LM. Differential macrophage programming in the tumor microenvironment. Trends Immunol. 2012;33:119–126.22277903
  • Lee HW, Choi HJ, Ha SJ, Lee KT, Kwon YG. Recruitment of monocytes/macrophages in different tumor microenvironments. Biochim Biophys Acta. 2013;1835:170–179.23287570
  • Liu Q, Song J, Pan Y, et al. WNT5a/CaMKII/ERK/CCL2 axis is required for tumor-associated macrophages to promote colorectal cancer progression. Int J Biol Sci. 2020;16:1023–1034.32140070
  • Venkatachalam K, Montell C. TRP channels. Annu Rev Biochem. 2007;76:387–417.17579562
  • Chen Z, Tang C, Zhu Y, et al. TrpC5 regulates differentiation through the Ca2+/WNT5a signalling pathway in colorectal cancer. Clin Sci (Lond). 2017;131:227–237.27895148
  • Blume-Jensen P, Hunter T. Oncogenic kinase signalling. Nature. 2001;411:355–365.11357143
  • Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science. 2002;298:1912–1934.12471243
  • Li L, Ying J, Tong X, et al. Epigenetic identification of receptor tyrosine kinase-like orphan receptor 2 as a functional tumor suppressor inhibiting beta-catenin and AKT signaling but frequently methylated in common carcinomas. Cell Mol Life Sci. 2014;71:2179–2192.24158497
  • Mikels A, Minami Y, Nusse R. Ror2 receptor requires tyrosine kinase activity to mediate WNT5a signaling. J Biol Chem. 2009;284:30167–30176.19720827
  • Chen Y, Bellamy WP, Seabra MC, Field MC, Ali BR. ER-associated protein degradation is a common mechanism underpinning numerous monogenic diseases including Robinow syndrome. Hum Mol Genet. 2005;14:2559–2569.16049033
  • Saraswati S, Agrawal SS. Brucine, an indole alkaloid from Strychnos nux-vomica attenuates VEGF-induced angiogenesis via inhibiting VEGFR2 signaling pathway in vitro and in vivo. Cancer Lett. 2013;332:83–93.23348691
  • Shi X, Zhu M, Kang Y, Yang T, Chen X, Zhang Y. WNT/beta-catenin signaling pathway is involved in regulating the migration by an effective natural compound brucine in LoVo cells. Phytomedicine. 2018;46:85–92.30097126
  • Aznar N, Ear J, Dunkel Y, et al. Convergence of WNT, growth factor, and heterotrimeric G protein signals on the guanine nucleotide exchange factor Daple. Sci Signal. 2018;11.
  • Mehdawi LM, Prasad CP, Ehrnstrom R, Andersson T, Sjolander A. Non-canonical WNT5a signaling up-regulates the expression of the tumor suppressor 15-PGDH and induces differentiation of colon cancer cells. Mol Oncol. 2016;10:1415–1429.27522468
  • Kuhajda FP. Fatty-acid synthase and human cancer: new perspectives on its role in tumor biology. Nutrition. 2000;16(3):202–208.10705076
  • Wang H, Xi Q, Wu G. Fatty acid synthase regulates invasion and metastasis of colorectal cancer via WNT signaling pathway. Cancer Med. 2016;5:1599–1606.27139420
  • Chi P, Allis CD, Wang GG. Covalent histone modifications – miswritten, misinterpreted and mis-erased in human cancers. Nat Rev Cancer. 2010;10:457–469.20574448
  • Kim KH, Roberts CW. Targeting EZH2 in cancer. Nat Med. 2016;22:128–134. doi:10.1038/nm.403626845405
  • Tao J, Shi L, Huang L, et al. EZH2 is involved in silencing of WNT5a during epithelial-mesenchymal transition of colon cancer cell line. J Cancer Res Clin Oncol. 2017;143(11):2211–2219. doi:10.1007/s00432-017-2479-228748258
  • Wang J, Wang X, Liu F, Fu Y. microRNA-335 inhibits colorectal cancer HCT116 cells growth and epithelial-mesenchymal transition (EMT) process by targeting Twist1. Pharmazie. 2017;72(8):475–481. doi:10.1691/ph.2017.748929441907
  • Yoon JK, Lee JS. Cellular signaling and biological functions of R-spondins. Cell Signal. 2012;24(2):369–377. doi:10.1016/j.cellsig.2011.09.02321982879
  • Wu C, Qiu S, Lu L, et al. RSPO2-LGR5 signaling has tumour-suppressive activity in colorectal cancer. Nat Commun. 2014;5:3149. doi:10.1038/ncomms414924476626
  • Dong X, Liao W, Zhang L, et al. RSPO2 suppresses colorectal cancer metastasis by counteracting the WNT5a/Fzd7-driven noncanonical WNT pathway. Cancer Lett. 2017;402:153–165. doi:10.1016/j.canlet.2017.05.02428600110
  • Truran PP, Johnson SJ, Bliss RD, Lennard TW, Aspinall SR. Parafibromin, galectin-3, PGP9.5, Ki67, and cyclin D1: using an immunohistochemical panel to aid in the diagnosis of parathyroid cancer. World J Surg. 2014;38(11):2845–2854. doi:10.1007/s00268-014-2700-225002250
  • Zheng HC, Wei ZL, Xu XY, et al. Parafibromin expression is an independent prognostic factor for colorectal carcinomas. Hum Pathol. 2011;42(8):1089–1102. doi:10.1016/j.humpath.2010.10.02421315421
  • Shen DF, Liu X, Yang XF, et al. The roles of parafibromin expression in ovarian epithelial carcinomas: a marker for differentiation and prognosis and a target for gene therapy. Tumour Biol. 2016;37(3):2909–2924. doi:10.1007/s13277-015-4103-x26409451
  • Liu Y, Rubin B, Bodine PV, Billiard J. WNT5a induces homodimerization and activation of Ror2 receptor tyrosine kinase. J Cell Biochem. 2008;105(2):497–502. doi:10.1002/jcb.2184818615587
  • Lee JM, Kim IS, Kim H, et al. RORalpha attenuates WNT/beta-catenin signaling by PKCalpha-dependent phosphorylation in colon cancer. Mol Cell. 2010;37(2):183–195. doi:10.1016/j.molcel.2009.12.02220122401
  • Lin X, Xu W, Shao M, et al. Shenling Baizhu San supresses colitis associated colorectal cancer through inhibition of epithelial-mesenchymal transition and myeloid-derived suppressor infiltration. BMC Complement Altern Med. 2015;15(1):126. doi:10.1186/s12906-015-0649-925897964
  • Wang Z, Chen H. Genistein increases gene expression by demethylation of WNT5a promoter in colon cancer cell line SW1116. Anticancer Res. 2010;30(11):4537–4545.21115903
  • Zhang Y, Chen H. Genistein attenuates WNT signaling by up-regulating sFRP2 in a human colon cancer cell line. Exp Biol Med (Maywood). 2011;236(6):714–722. doi:10.1258/ebm.2011.01034721571909
  • Zhang Y, Li Q, Zhou D, Chen H. Genistein, a soya isoflavone, prevents azoxymethane-induced up-regulation of WNT/beta-catenin signalling and reduces colon pre-neoplasia in rats. Br J Nutr. 2013;109(1):33–42. doi:10.1017/S000711451200087622716201
  • Zhang Y, Li Q, Chen H. DNA methylation and histone modifications of WNT genes by genistein during colon cancer development. Carcinogenesis. 2013;34(8):1756–1763. doi:10.1093/carcin/bgt12923598468
  • Lazarova DL, Bordonaro M, Carbone R, Sartorelli AC. Linear relationship between WNT activity levels and apoptosis in colorectal carcinoma cells exposed to butyrate. Int J Cancer. 2004;110(4):523–531. doi:10.1002/ijc.2015215122584
  • Bordonaro M, Lazarova DL, Sartorelli AC. The activation of beta-catenin by WNT signaling mediates the effects of histone deacetylase inhibitors. Exp Cell Res. 2007;313(8):1652–1666. doi:10.1016/j.yexcr.2007.02.00817359971
  • Bordonaro M, Tewari S, Cicco CE, Atamna W, Lazarova DL. A switch from canonical to noncanonical WNT signaling mediates drug resistance in colon cancer cells. PLoS One. 2011;6:e27308. doi:10.1371/journal.pone.002730822073312
  • Zaid H, Silbermann M, Ben-Arye E, Saad B. Greco-arab and islamic herbal-derived anticancer modalities: from tradition to molecular mechanisms. Evid Based Complement Alternat Med. 2012;2012:349040. doi:10.1155/2012/34904022203868
  • Lansky EP, Newman RA. Punica granatum (pomegranate) and its potential for prevention and treatment of inflammation and cancer. J Ethnopharmacol. 2007;109(2):177–206. doi:10.1016/j.jep.2006.09.00617157465
  • Mertens-Talcott SU, Jilma-Stohlawetz P, Rios J, Hingorani L, Derendorf H. Absorption, metabolism, and antioxidant effects of pomegranate (punica granatum l.) polyphenols after ingestion of a standardized extract in healthy human volunteers. J Agric Food Chem. 2006;54(23):8956–8961. doi:10.1021/jf061674h17090147
  • Sadik NA, Shaker OG. Inhibitory effect of a standardized pomegranate fruit extract on WNT signalling in 1, 2-dimethylhydrazine induced rat colon carcinogenesis. Dig Dis Sci. 2013;58:2507–2517. doi:10.1007/s10620-013-2704-z23722564
  • Safholm A, Leandersson K, Dejmek J, Nielsen CK, Villoutreix BO, Andersson T. A formylated hexapeptide ligand mimics the ability of WNT-5a to impair migration of human breast epithelial cells. J Biol Chem. 2006;281(5):2740–2749. doi:10.1074/jbc.M50838620016330545
  • Safholm A, Tuomela J, Rosenkvist J, Dejmek J, Harkonen P, Andersson T. The WNT-5a-derived hexapeptide Foxy-5 inhibits breast cancer metastasis in vivo by targeting cell motility. Clin Cancer Res. 2008;14:6556–6563. doi:10.1158/1078-0432.CCR-08-071118927296
  • Osman J, Bellamkonda K, Liu Q, Andersson T, Sjolander A. The WNT5a Agonist Foxy5 Reduces the Number of Colonic Cancer Stem Cells in a Xenograft Mouse Model of Human Colonic Cancer. Anticancer Res. 2019;39:1719–1728. doi:10.21873/anticanres.1327830952711
  • Santoro A, Pisanti S, Grimaldi C, et al. Rimonabant inhibits human colon cancer cell growth and reduces the formation of precancerous lesions in the mouse colon. Int J Cancer. 2009;125:996–1003. doi:10.1002/ijc.2448319479993
  • Gustafsson SB, Lindgren T, Jonsson M, Jacobsson SO. Cannabinoid receptor-independent cytotoxic effects of cannabinoids in human colorectal carcinoma cells: synergism with 5-fluorouracil. Cancer Chemother Pharmacol. 2009;63:691–701. doi:10.1007/s00280-008-0788-518629502
  • Gazzerro P, Malfitano AM, Proto MC, et al. Synergistic inhibition of human colon cancer cell growth by the cannabinoid CB1 receptor antagonist rimonabant and oxaliplatin. Oncol Rep. 2010;23:171–175.19956878
  • Proto MC, Fiore D, Piscopo C, et al. Inhibition of WNT/beta-Catenin pathway and Histone acetyltransferase activity by Rimonabant: a therapeutic target for colon cancer. Sci Rep. 2017;7(1):11678. doi:10.1038/s41598-017-11688-x28916833
  • Wei W, Sun HH, Li N, et al. WNT5a modulates cell cycle progression and contributes to the chemoresistance in pancreatic cancer cells. Hepatobiliary Pancreat Dis Int. 2014;13(5):529–538. doi:10.1016/S1499-3872(14)60277-025308364
  • Jiang G, Lin J, Wang W, Sun M, Chen K, Wang F. WNT5a promoter methylation is associated with better responses and longer progression-free survival in colorectal cancer patients treated with 5-fluorouracil-based chemotherapy. Genet Test Mol Biomarkers. 2017;21:74–79. doi:10.1089/gtmb.2016.016228051879
  • Yin L, Grandi N, Raum E, Haug U, Arndt V, Brenner H. Meta-analysis: longitudinal studies of serum vitamin D and colorectal cancer risk. Aliment Pharmacol Ther. 2009;30(2):113–125. doi:10.1111/j.1365-2036.2009.04022.x19392870
  • Feldman D, Krishnan AV, Swami S, Giovannucci E, Feldman BJ. The role of vitamin D in reducing cancer risk and progression. Nat Rev Cancer. 2014;14(5):342–357. doi:10.1038/nrc369124705652
  • Groschel C, Aggarwal A, Tennakoon S, et al. Effect of 1,25-dihydroxyvitamin D3 on the WNT pathway in non-malignant colonic cells. J Steroid Biochem Mol Biol. 2016;155:224–230. doi:10.1016/j.jsbmb.2015.02.01125777538
  • Ghosh-Choudhury N, Mandal CC, Ghosh-Choudhury N, Ghosh Choudhury G. Simvastatin induces derepression of PTEN expression via NFkappaB to inhibit breast cancer cell growth. Cell Signal. 2010;22(5):749–758. doi:10.1016/j.cellsig.2009.12.01020060890
  • Fang Z, Tang Y, Fang J, et al. Simvastatin inhibits renal cancer cell growth and metastasis via AKT/mTOR, ERK and JAK2/STAT3 pathway. PLoS One. 2013;8(5):e62823. doi:10.1371/journal.pone.006282323690956
  • Cho SJ, Kim JS, Kim JM, Lee JY, Jung HC, Song IS. Simvastatin induces apoptosis in human colon cancer cells and in tumor xenografts, and attenuates colitis-associated colon cancer in mice. Int J Cancer. 2008;123(4):951–957. doi:10.1002/ijc.2359318521906
  • Gopalan A, Yu W, Sanders BG, Kline K. Simvastatin inhibition of mevalonate pathway induces apoptosis in human breast cancer cells via activation of JNK/CHOP/DR5 signaling pathway. Cancer Lett. 2013;329(1):9–16. doi:10.1016/j.canlet.2012.08.03122960596
  • Lu L, Huang W, Hu W, et al. Kruppel-like factor 2 mediated anti-proliferative and anti-metastasis effects of simvastatin in p53 mutant colon cancer. Biochem Biophys Res Commun. 2019;511(4):772–779. doi:10.1016/j.bbrc.2019.02.12730833076
  • Ciappio ED, Liu Z, Brooks RS, Mason JB, Bronson RT, Crott JW. Maternal B vitamin supplementation from preconception through weaning suppresses intestinal tumorigenesis in Apc1638N mouse offspring. Gut. 2011;60(12):1695–1702. doi:10.1136/gut.2011.24029121659408
  • Katoh M. WNT/PCP signaling pathway and human cancer (review). Oncol Rep. 2005;14(6):1583–1588.16273260
  • Gao Y, Zhao H, Wang P, et al. The roles of SOCS3 and STAT3 in bacterial infection and inflammatory diseases. Scand J Immunol. 2018;88(6):e12727. doi:10.1111/sji.1272730341772
  • Balanis N, Wendt MK, Schiemann BJ, Wang Z, Schiemann WP, Carlin CR. Epithelial to mesenchymal transition promotes breast cancer progression via a fibronectin-dependent STAT3 signaling pathway. J Biol Chem. 2013;288(25):17954–17967. doi:10.1074/jbc.M113.47527723653350
  • Kim JH, Kang GH. Evolving pathologic concepts of serrated lesions of the colorectum. J Pathol Transl Med. 2020;54(4):276–289. doi:10.4132/jptm.2020.04.1532580537
  • Ogino S, Goel A. Molecular classification and correlates in colorectal cancer. J Mol Diagn. 2008;10(1):13–27. doi:10.2353/jmoldx.2008.07008218165277
  • Ogino S, Nosho K, Kirkner GJ, et al. CpG island methylator phenotype, microsatellite instability, BRAF mutation and clinical outcome in colon cancer. Gut. 2009;58(1):90–96. doi:10.1136/gut.2008.15547318832519
  • Kim JH, Shin SH, Kwon HJ, Cho NY, Kang GH. Prognostic implications of CpG island hypermethylator phenotype in colorectal cancers. Virchows Arch. 2009;455(6):485–494. doi:10.1007/s00428-009-0857-019911194
  • Dahlin AM, Palmqvist R, Henriksson ML, et al. The role of the CpG island methylator phenotype in colorectal cancer prognosis depends on microsatellite instability screening status. Clin Cancer Res. 2010;16:1845–1855. doi:10.1158/1078-0432.CCR-09-259420197478
  • Ribic CM, Sargent DJ, Moore MJ, et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N Engl J Med. 2003;349(3):247–257. doi:10.1056/NEJMoa02228912867608
  • Carethers JM, Smith EJ, Behling CA, et al. Use of 5-fluorouracil and survival in patients with microsatellite-unstable colorectal cancer. Gastroenterology. 2004;126(2):394–401. doi:10.1053/j.gastro.2003.12.02314762775
  • Rawson JB, Mrkonjic M, Daftary D, et al. Promoter methylation of WNT5a is associated with microsatellite instability and BRAF V600E mutation in two large populations of colorectal cancer patients. Br J Cancer. 2011;104(12):1906–1912. doi:10.1038/bjc.2011.16521587258
  • Wang Y. WNT/Planar cell polarity signaling: a new paradigm for cancer therapy. Mol Cancer Ther. 2009;8(8):2103–2109. doi:10.1158/1535-7163.MCT-09-028219671746
  • Dejmek J, Dejmek A, Safholm A, Sjolander A, Andersson T. WNT-5a protein expression in primary dukes B colon cancers identifies a subgroup of patients with good prognosis. Cancer Res. 2005;65(20):9142–9146. doi:10.1158/0008-5472.CAN-05-171016230369
  • Ahn JB, Chung WB, Maeda O, et al. DNA methylation predicts recurrence from resected stage III proximal colon cancer. Cancer. 2011;117(9):1847–1854. doi:10.1002/cncr.2573721509761
  • Kim SH, Park KH, Shin SJ, et al. CpG island methylator phenotype and methylation of wnt pathway genes together predict survival in patients with colorectal cancer. Yonsei Med J. 2018;59(5):588–594. doi:10.3349/ymj.2018.59.5.58829869456
  • Kamposioras K, Konstantara A, Kotoula V, et al. The prognostic significance of WNT pathway in surgically-treated colorectal cancer: beta-catenin expression predicts for disease-free survival. Anticancer Res. 2013;33(10):4573–4584.24123033