98
Views
1
CrossRef citations to date
0
Altmetric
Original Research

Investigation of Chromosome 1 Aberrations in the Lymphocytes of Prostate Cancer and Benign Prostatic Hyperplasia Patients by Fluorescence in situ Hybridization

ORCID Icon, , & ORCID Icon
Pages 4291-4298 | Published online: 31 May 2021

References

  • Beskid O, Binkova B, Dusek Z, et al. Chromosomal aberrations by fluorescence in situ hybridization (FISH) - Biomarker of exposure to carcinogenic PAHs. Mutat Res. 2007;690:62–70. doi:10.1016/j.mrfmmm.2007.02.023
  • Bonassi S. Chromosomal aberration in peripheral blood lymphocytes of healthy subjects and risk of cancer. In: Vijayalaxmi OG, editor. Chromosomal Alterations. Berlin, Heidelberg: Springer; 2007.
  • Cebulska-Wasilewska A. Response to challenging dose of X-rays as a predictive assay for molecular epidemiology. Mutat Res. 2003;544:289–297. doi:10.1016/j.mrrev.2003.07.00314644330
  • Grade M, Difilippantonio MJ, Camps J. Patterns of chromosomal aberrations in solid tumors. Recent Results Cancer Res. 2015;200:115–142.26376875
  • Boei JJ, Vermeulen S, Natarajan AT. Detection of chromosomal aberrations by fluorescence in situ hybridization in the first three post-irradiation divisions of human lymphocytes. Mutat Res. 1996;349:127–135. doi:10.1016/0027-5107(95)00171-98569785
  • Rana S, Kumar R, Sultana S, Sharma RK. Radiation-induced biomarkers for the detection and assessment of absorbed radiation doses. J Pharm Bioallied Sci. 2010;2(3):189–196. doi:10.4103/0975-7406.6850021829314
  • Mladenov E, Magin S, Soni A, Iliakis G. DNA double-strand break repair as determinant of cellular radiosensitivity to killing and target in radiation therapy. Front Oncol. 2013;3:113. doi:10.3389/fonc.2013.0011323675572
  • Grönberg H. Prostate cancer epidemiology. Lancet. 2003;361:859–864. doi:10.1016/S0140-6736(03)12713-412642065
  • Chughtai B, Forde JC, Thomas DDM, et al. Benign prostatic hyperplasia. Nature Rev. 2016;16032.
  • Mirone V, Fusco F, Verze P, et al. Androgens and benign prostatic hyperplasia. Eur Urol Supp. 2006;5:410–417. doi:10.1016/j.eursup.2006.02.004
  • Rakel D. Chapter 60 - Benign prostatic hyperplasia. In: Integrative Medicine. Elsevier, 4th; 2018:601–607. doi:10.1016/B978-0-323-35868-2.00060-8
  • Gallardo FF, Quintar AA. The pathological growth of the prostate gland in atherogenic contexts. Exp Gerontol. 2021;148:111304. doi:10.1016/j.exger.2021.11130433676974
  • Singh R, Eeles RA, Durocher F, et al. High risk genes predisposing to prostate cancer development – do they exist? Prostate Cancer Prostatic Dis. 2000;3:241–247. doi:10.1038/sj.pcan.450047812497071
  • Frank C, Sundquist J, Hemminki A, Hemminki K. Familial associations between prostate cancer and other cancers. Eur Urol. 2017;71:162–165. doi:10.1016/j.eururo.2016.07.03127498599
  • Ballon-Landa E, Parsons JK. Nutrition, physical activity, and lifestyle factors in prostate cancer prevention. Curr Opin Urol. 2018;28:55–61. doi:10.1097/MOU.000000000000046029049045
  • Saramäki OR, Visakorpi T. Chromosomal aberrations in prostate cancer. Front Biosci. 2018;12:3287–3301. doi:10.2741/2312
  • Smith JR, Freije D, Carpten JD, et al. Major susceptibility locus for prostate cancer on chromosome 1 suggested by a genome-wide search. Science. 1996;274:1371–1374. doi:10.1126/science.274.5291.13718910276
  • Robinson D, Garmo H, Lissbrant IF, et al. Prostate cancer death after radiotherapy or radical prostatectomy: a nationwide population-based observational study. Eur Urol. 2018;73:502–511. doi:10.1016/j.eururo.2017.11.03929254629
  • Podder TK, Fredman ET, Ellis RJ. Advances in radiotherapy for prostate cancer treatment. Adv Exp Med Biol. 2018;1096:31–47.
  • Takakusagi Y, Hiroyuki Katoh H, Kano K. Preliminary result of carbon-ion radiotherapy using the spot scanning method for prostate cancer. Radiat Oncol. 2020;15:127. doi:10.1186/s13014-020-01575-732460889
  • Cytogenetic dosimetry: applications in preparedness for and response to radiation emergencies, IAEA report. Vienna; 2011.
  • Cebulska-Wasilewska A, Miszczyk J, Balegenowa N, et al. Studies of the susceptibility to radiation of prostate cancer or BPH patients and healthy donors. In: Cebulska-Wasilewska A, Osipov AN, Darroudi F, editors. Rapid Diagnosis in Populations at Risk from Radiation and Chemicals. Vol. 73. IOS Press Amsterdam; 2010:211–220. ISBN 978-1-60750-644-7.
  • Prasanna PGS, Hamel CJC, Escalada ND, et al. Biological dosimetry using human interphase peripheral blood lymphocytes. Mil Med. 2002;167:10–12. doi:10.1093/milmed/167.suppl_1.10
  • Fowler JF. The radiobiology of prostate cancer including new aspects of fractionated radiotherapy. Acta Oncol. 2005;44(3):265–276. doi:10.1080/0284186041000282416076699
  • Hille A, Hofman-Hüther H, Kühnle E, et al. Spontaneous and radiation-induced chromosomal instability and persistence of chromosome aberrations after radiotherapy in lymphocytes from prostate cancer patients. Radiat Environ Biophys. 2010;49:27–37. doi:10.1007/s00411-009-0244-x19760427
  • Beaton LA, Marro L, Samiee S, et al. Investigating chromosome damage using fluorescent in situ hybridization to identify biomarkers of radiosensitivity in prostate cancer patients. Int J Radiat Biol. 2013;89:1087–1093. doi:10.3109/09553002.2013.82506023855681
  • Beaton LA, Ferrarotto C, Marro L, et al. Chromosome damage and cell proliferation rates in vitro irradiated whole blood as markers of late radiation toxicity after the radiation therapy to the prostate. Int J Radiat Oncol Biol Phys. 2013;85:1346–1352. doi:10.1016/j.ijrobp.2012.09.02623158059
  • El-Zein R, Gu Y, Sierra MS, et al. Chromosomal instability in peripheral blood lymphocytes and risk of prostate cancer. Cancer Epidemiol Biomarkers Prev. 2005;14:748–752. doi:10.1158/1055-9965.EPI-04-023615767363
  • Xu J, Zheng SL, Chang B, et al. Linkage of prostate cancer susceptibility loci to chromosome 1. Hum Genet. 2001;189:335–345. doi:10.1007/s004390100488
  • Berthon P, Valeri A, Cohen-Akenine A, et al. Predisposing gene for early-onset prostate cancer, localized on chromosome 1q42.2-43. Am J Hum Genet. 1998:1416–1424.9585607
  • Miszczyk J, Cebulska-Wasilewska A. Retrospective biological dosimetry of the absorbed dose – training on the estimation of the radiation dose of a person presumably exposed to X-ray radiation by FISH. In: Cebulska-Wasilewska A, Osipov AN, Darroudi F, editors. Rapid Diagnosis in Populations at Risk from Radiation and Chemicals. Vol. 73. IOS Press Amsterdam. 2010;211–220. ISBN 978-1-60750-644-7.
  • Miszczyk J, Cebulska-Wasilewska A, Glazar B, et al. Comparison between susceptibilities to radiation treatment of lymphocytes from prostate cancer (PC) with BPH patients. Eur Urol Suppl. 2012;11(4):126–127. doi:10.1016/S1569-9056(13)60184-0
  • Vodenkova S, Polivkova Z, Musak L, et al. Structural chromosomal aberrations as potential risk markers in incident cancer patients. Mutagenesis. 2015;30:557–563. doi:10.1093/mutage/gev01825800034
  • Distel LVR, Neubauer S, Keller U, et al. Individual differences in chromosomal aberrations after in vitro irradiation of cells from healthy individuals, cancer and cancer susceptibility syndrome patients. Radiat Oncol. 2006;81:257–263. doi:10.1016/j.radonc.2006.10.012
  • Wilson JD, Hammond EM, Higgins GS, Petersson K. Ultra-high dose rate (FLASH) radiotherapy: silver bullet or fool’s gold? Front Oncol. 2020;9:1563. doi:10.3389/fonc.2019.0156332010633
  • Miszczyk J, Rawojć K, Panek A, et al. Do protons and X-rays induce cell-killing in human peripheral blood lymphocytes by different mechanisms? Clin Transl Radiat Oncol. 2018;31(9):23–29. doi:10.1016/j.ctro.2018.01.004
  • Kaddour A, Colicchio B, Buron D, et al. Transmission of induced chromosomal aberrations through successive mitotic divisions in human lymphocytes after in vitro and in vivo radiation. Sci Rep. 2017;7(1):3291. doi:10.1038/s41598-017-03198-728607452