125
Views
13
CrossRef citations to date
0
Altmetric
Original Research

TGF-β-MTA1-SMAD7-SMAD3-SOX4-EZH2 Signaling Axis Promotes Viability, Migration, Invasion and EMT of Hepatocellular Carcinoma Cells

, , &
Pages 7087-7099 | Published online: 10 Sep 2021

References

  • CraigAJ, von FeldenJ, Garcia-LezanaT, SarcognatoS, VillanuevaA. Tumour evolution in hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2020;17(3):139–152. doi:10.1038/s41575-019-0229-431792430
  • SagnelliE, MaceraM, RussoA, CoppolaN, SagnelliC. Epidemiological and etiological variations in hepatocellular carcinoma. Infection. 2020;48(1):7–17. doi:10.1007/s15010-019-01345-y31347138
  • GallePR, FoersterF, KudoM, et al. Biology and significance of alpha-fetoprotein in hepatocellular carcinoma. Liver Int. 2019;39(12):2214–2229. doi:10.1111/liv.1422331436873
  • JinYJ, ByunS, HanS, et al. Differential alternative splicing regulation among hepatocellular carcinoma with different risk factors. BMC Med Genomics. 2019;12:175. doi:10.1186/s12920-019-0635-z31856847
  • RoseSC. Overview of ablative therapy for hepatocellular carcinoma. Gastroenterol Hepatol (N Y). 2019;15(9):484–487.31787856
  • TsilimigrasDI, BaganteF, MorisD, et al. Defining the chance of cure after resection for hepatocellular carcinoma within and beyond the Barcelona clinic liver cancer guidelines: a multi-institutional analysis of 1010 patients. Surgery. 2019;166(6):967–974. doi:10.1016/j.surg.2019.08.01031606196
  • LiuGM, XieWX, ZhangCY, XuJW. Identification of a four-gene metabolic signature predicting overall survival for hepatocellular carcinoma. J Cell Physiol. 2020;235(2):1624–1636. doi:10.1002/jcp.2908131309563
  • MaA, StratikopoulosE, ParkKS, et al. Discovery of a first-in-class EZH2 selective degrader. Nat Chem Biol. 2020;16(2):214–222. doi:10.1038/s41589-019-0421-431819273
  • LiB, ChngWJ. EZH2 abnormalities in lymphoid malignancies: underlying mechanisms and therapeutic implications. J Hematol Oncol. 2019;12(1):118. doi:10.1186/s13045-019-0814-631752930
  • DuanR, DuW, GuoW. EZH2: a novel target for cancer treatment. J Hematol Oncol. 2020;13(1):104. doi:10.1186/s13045-020-00937-832723346
  • JonesBA, VaramballyS, ArendRC. Histone methyltransferase EZH2: a therapeutic target for ovarian cancer. Mol Cancer Ther. 2018;17(3):591–602. doi:10.1158/1535-7163.MCT-17-043729726819
  • LabbeDP, SweeneyCJ, BrownM, et al. TOP2A and EZH2 provide early detection of an aggressive prostate cancer subgroup. Clin Cancer Res. 2017;23(22):7072–7083. doi:10.1158/1078-0432.CCR-17-041328899973
  • ZhangH, QiJ, ReyesJM, et al. Oncogenic deregulation of EZH2 as an opportunity for targeted therapy in lung cancer. Cancer Discov. 2016;6(9):1006–1021. doi:10.1158/2159-8290.CD-16-016427312177
  • ChenS, PuJ, BaiJ, et al. EZH2 promotes hepatocellular carcinoma progression through modulating miR-22/galectin-9 axis. J Exp Clin Cancer Res. 2018;37(1):3. doi:10.1186/s13046-017-0670-629316949
  • ShiY, YangX, XueX, et al. HANR promotes hepatocellular carcinoma progression via miR-214/EZH2/TGF-beta axis. Biochem Biophys Res Commun. 2018;506(1):189–193. doi:10.1016/j.bbrc.2018.10.03830342849
  • LiL, LiuJ, XueH, et al. A TGF-β-MTA1-SOX4-EZH2 signaling axis drives epithelial-mesenchymal transition in tumor metastasis. Oncogene. 2020;39(10):2125–2139. doi:10.1038/s41388-019-1132-831811272
  • General Assembly of the World Medical Association. World medical association declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013;310(20):2191–2194. doi:10.1001/jama.2013.28105324141714
  • KolosovaI, NetheryD, KernJA. Role of Smad2/3 and p38 MAP kinase in TGF-beta1-induced epithelial-mesenchymal transition of pulmonary epithelial cells. J Cell Physiol. 2011;226(5):1248–1254. doi:10.1002/jcp.2244820945383
  • LivakKJ, SchmittgenTD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods (San Diego, Calif). 2001;25(4):402–408. doi:10.1006/meth.2001.1262
  • ChittockEC, LatwielS, MillerTC, MüllerCW. Molecular architecture of polycomb repressive complexes. Biochem Soc Trans. 2017;45(1):193–205. doi:10.1042/bst2016017328202673
  • MargueronR, ReinbergD. The Polycomb complex PRC2 and its mark in life. Nature. 2011;469(7330):343–349. doi:10.1038/nature0978421248841
  • CyrusS, BurkardtD, WeaverDD, GibsonWT. PRC2-complex related dysfunction in overgrowth syndromes: a review of EZH2, EED, and SUZ12 and their syndromic phenotypes. Am J Med Genet C Semin Med Genet. 2019;181(4):519–531. doi:10.1002/ajmg.c.3175431724824
  • FeitelsonMA, ArzumanyanA, KulathinalRJ, et al. Sustained proliferation in cancer: mechanisms and novel therapeutic targets. Semin Cancer Biol. 2015;35:S25–S54. doi:10.1016/j.semcancer.2015.02.00625892662
  • TalmadgeJE, FidlerIJ. AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Res. 2010;70(14):5649–5669. doi:10.1158/0008-5472.CAN-10-104020610625
  • ZhuangJ, HuoQ, YangF, XieN. Perspectives on the role of histone modification in breast cancer progression and the advanced technological tools to study epigenetic determinants of metastasis. Front Genet. 2020;11:603552. doi:10.3389/fgene.2020.60355233193750
  • ZhangJ, MillerZ, MusichPR, et al. DSTYK promotes metastasis and chemoresistance via EMT in colorectal cancer. Front Pharmacol. 2020;11:1250. doi:10.3389/fphar.2020.0125032982725
  • XuY, RenH, JiangJ, et al. KIAA0247 inhibits growth, migration, invasion of non-small-cell lung cancer through regulating the Notch pathway. Cancer Sci. 2018;109(4):1055–1065. doi:10.1111/cas.1353929451718
  • LiuX, ChuKM. E-cadherin and gastric cancer: cause, consequence, and applications. Biomed Res Int. 2014;2014:637308. doi:10.1155/2014/63730825184143
  • MrozikKM, BlaschukOW, CheongCM, ZannettinoACW, VandykeK. N-cadherin in cancer metastasis, its emerging role in haematological malignancies and potential as a therapeutic target in cancer. BMC Cancer. 2018;18(1):939. doi:10.1186/s12885-018-4845-030285678
  • IvaskaJ. Vimentin: central hub in EMT induction?Small GTPases. 2011;2(1):51–53. doi:10.4161/sgtp.2.1.1511421686283
  • ChangJW, GwakSY, ShimGA, et al. EZH2 is associated with poor prognosis in head-and-neck squamous cell carcinoma via regulating the epithelial-to-mesenchymal transition and chemosensitivity. Oral Oncol. 2016;52:66–74. doi:10.1016/j.oraloncology.2015.11.00226604082
  • NickelJ, Ten DijkeP, MuellerTD. TGF-β family co-receptor function and signaling. Acta Biochim Biophys Sin (Shanghai). 2018;50(1):12–36. doi:10.1093/abbs/gmx12629293886
  • SuJ, MorganiSM, DavidCJ, et al. TGF-β orchestrates fibrogenic and developmental EMTs via the RAS effector RREB1. Nature. 2020;577(7791):566–571. doi:10.1038/s41586-019-1897-531915377
  • SenN, GuiB, KumarR. Role of MTA1 in cancer progression and metastasis. Cancer Metastasis Rev. 2014;33(4):879–889. doi:10.1007/s10555-014-9515-325344802
  • WangT, LiW, HuangH, WangC. Metastasis-associated 1 (MTA1) gene expression promotes angiogenesis in mouse xenografts from human non-small cell lung cancer (NSCLC) cells. Med Sci Monit. 2019;25:484–491. doi:10.12659/msm.91232130651530
  • ChungAC, DongY, YangW, ZhongX, LiR, LanHY. Smad7 suppresses renal fibrosis via altering expression of TGF-β/Smad3-regulated microRNAs. Mol Ther. 2013;21(2):388–398. doi:10.1038/mt.2012.25123207693
  • SalotS, GudeR. MTA1-mediated transcriptional repression of SMAD7 in breast cancer cell lines. Eur J Cancer. 2013;49(2):492–499. doi:10.1016/j.ejca.2012.06.01922841502
  • HaniehH, AhmedEA, VishnubalajiR, AlajezNM. SOX4: epigenetic regulation and role in tumorigenesis. Semin Cancer Biol. 2019. doi:10.1016/j.semcancer.2019.06.022
  • HasegawaS, NaganoH, KonnoM, et al. A crucial epithelial to mesenchymal transition regulator, Sox4/Ezh2 axis is closely related to the clinical outcome in pancreatic cancer patients. Int J Oncol. 2016;48(1):145–152. doi:10.3892/ijo.2015.325826648239