165
Views
8
CrossRef citations to date
0
Altmetric
Original Research

Machine Learning Models to Improve the Differentiation Between Benign and Malignant Breast Lesions on Ultrasound: A Multicenter External Validation Study

, , ORCID Icon, , , , ORCID Icon, , ORCID Icon & show all
Pages 3367-3379 | Published online: 16 Apr 2021

References

  • Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424. doi:10.3322/caac.2149230207593
  • Fan L, Strasser-Weippl K, Li JJ, et al. Breast cancer in China. Lancet Oncol. 2014;15:e279–e289. doi:10.1016/s1470-2045(13)70567-924872111
  • Ma J, Jemal A, Fedewa SA, et al. The American Cancer Society 2035 challenge goal on cancer mortality reduction. CA Cancer J Clin. 2019;69:351–362. doi:10.3322/caac.2156431066919
  • Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66(2):115–132. doi:10.3322/caac.2133826808342
  • Gao Y, Liu M, Shi S, et al. Diagnostic value of seven biomarkers for breast cancer: an overview with evidence mapping and indirect comparisons of diagnostic test accuracy. Clin Exp Med. 2020;20:97–108. doi:10.1007/s10238-019-00598-z31894424
  • Yan C, Hu J, Yang Y, et al. Plasma extracellular vesicle‑packaged microRNAs as candidate diagnostic biomarkers for early‑stage breast cancer. Mol Med Rep. 2019;20:3991–4002. doi:10.3892/mmr.2019.1066931545424
  • Kahraman M, Röske A, Laufer T, et al. MicroRNA in diagnosis and therapy monitoring of early-stage triple-negative breast cancer. Sci Rep. 2018;8:11584. doi:10.1038/s41598-018-29917-230072748
  • Nassar FJ, Nasr R, Talhouk R. MicroRNAs as biomarkers for early breast cancer diagnosis, prognosis and therapy prediction. Pharmacol Ther. 2017;172:34–49. doi:10.1016/j.pharmthera.2016.11.01227916656
  • Loke SY, Munusamy P, Koh GL, et al. A circulating miRNA signature for stratification of breast lesions among women with abnormal screening mammograms. Cancers (Basel). 2019;11:1872. doi:10.3390/cancers11121872
  • Yang Y, Li F, Luo X, et al. Identification of LCN1 as a potential biomarker for breast cancer by bioinformatic analysis. DNA Cell Biol. 2019;38:1088–1099. doi:10.1089/dna.2019.484331424267
  • Qian X, Ruan L. APC gene promoter aberrant methylation in serum as a biomarker for breast cancer diagnosis: a meta-analysis. Thorac Cancer. 2018;9:284–290. doi:10.1111/1759-7714.1258029297603
  • Ye M, Huang T, Ying Y, et al. Detection of 14-3-3 sigma (σ) promoter methylation as a noninvasive biomarker using blood samples for breast cancer diagnosis. Oncotarget. 2017;8:9230–9242. doi:10.18632/oncotarget.1399227999208
  • Crigna AT, Samec M, Koklesova L, et al. Cell-free nucleic acid patterns in disease prediction and monitoring-hype or hope? EPMA J. 2020;11:1–25. doi:10.1007/s13167-020-00226-x32140182
  • Phallen J, Sausen M, Adleff V, et al. Direct detection of early-stage cancers using circulating tumor DNA. Sci Transl Med. 2017;9:eaan2415. doi:10.1126/scitranslmed.aan241528814544
  • Goldstein E, Yeghiazaryan K, Ahmad A, et al. Optimal multiparametric set-up modelled for best survival outcomes in palliative treatment of liver malignancies: unsupervised machine learning and 3 PM recommendations. EPMA J. 2020;11:505–515. doi:10.1007/s13167-020-00221-232839667
  • Qian S, Golubnitschaja O, Zhan X. Chronic inflammation: key player and biomarker-set to predict and prevent cancer development and progression based on individualized patient profiles. EPMA J. 2019;10:365–381. doi:10.1007/s13167-019-00194-x31832112
  • Samec M, Liskova A, Koklesova L, et al. Flavonoids against the Warburg phenotype-concepts of predictive, preventive and personalised medicine to cut the Gordian knot of cancer cell metabolism. EPMA J. 2020;11:377–398. doi:10.1007/s13167-020-00217-y32843908
  • Yap MH, Pons G, Martí J, et al. Automated breast ultrasound lesions detection using convolutional neural networks. IEEE J Biomed Health Inform. 2018;22:1218–1226. doi:10.1109/JBHI.2017.273187328796627
  • Han S, Kang H-K, Jeong J-Y, et al. A deep learning framework for supporting the classification of breast lesions in ultrasound images. Phys Med Biol. 2017;62:7714. doi:10.1088/1361-6560/aa82ec28753132
  • Fujioka T, Kubota K, Mori M, et al. Efficient anomaly detection with generative adversarial network for breast ultrasound imaging. Diagnostics. 2020;10:456. doi:10.3390/diagnostics10070456
  • Zhu Y-C, AlZoubi A, Jassim S, et al. A generic deep learning framework to classify thyroid and breast lesions in ultrasound images. Ultrasonics. 2021;110:106300. doi:10.1016/j.ultras.2020.10630033232887
  • Fujioka T, Kubota K, Mori M, et al. Distinction between benign and malignant breast masses at breast ultrasound using deep learning method with convolutional neural network. Jpn J Radiol. 2019;37:466–472. doi:10.1007/s11604-019-00831-530888570
  • Yap MH, Goyal M, Osman FM, et al. Breast ultrasound lesions recognition: end-to-end deep learning approaches. J Med Imaging. 2018;6:011007.
  • Zhao Z, He YJOT. Application value of random forest and support vector machine in diagnosing breast lesions by using ultrasonic image features. Chin J Health Stat. 2018;35:684–688.
  • Harkness EF, Astley SM, Evans DG. Risk-based breast cancer screening strategies in women. Best Pract Res Clin Obstet Gynaecol. 2020;65:3–17. doi:10.1016/j.bpobgyn.2019.11.00531848103
  • Kolb TM, Lichy J, Newhouse JH. Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: an analysis of 27,825 patient evaluations. Radiology. 2002;225:165–175. doi:10.1148/radiol.225101166712355001
  • Melnikow J, Fenton JJ, Whitlock EP, et al. Supplemental screening for breast cancer in women with dense breasts: a systematic review for the U.S. Preventive Services Task Force. Ann Intern Med. 2016;164(4):268–278. doi:10.7326/M15-178926757021
  • Wang Y, Chen H, Li N, et al. Ultrasound for breast cancer screening in high-risk women: results from a population-based cancer screening program in China. Front Oncol. 2019;9:286. doi:10.3389/fonc.2019.0028631069168
  • Islam MM, Haque MR, Iqbal H, et al. Breast cancer prediction: a comparative study using machine learning techniques. SN Comp Sci. 2020;1(5):290. doi:10.1007/s42979-020-00305-w
  • Salod Z, Singh Y. A five-year (2015 to 2019) analysis of studies focused on breast cancer prediction using machine learning: a systematic review and bibliometric analysis. J Public Health Res. 2020;9:1792. doi:10.4081/jphr.2020.1772
  • Nindrea RD, Aryandono T, Lazuardi L, et al. Diagnostic accuracy of different machine learning algorithms for breast cancer risk calculation: a meta-analysis. Asian Pac J Cancer Prev. 2018;19:1747.30049182
  • Yassin NIR, Omran S, El Houby EMF, Allam H. Machine learning techniques for breast cancer computer aided diagnosis using different image modalities: a systematic review. Comput Methods Programs Biomed. 2018;156:25–45. doi:10.1016/j.cmpb.2017.12.01229428074
  • Kumar M, Khatri SK, Mohammadian M. Breast cancer identification and prognosis with machine learning techniques - an elucidative review. J Interdiscip Math. 2020;23:503–521. doi:10.1080/09720502.2020.1731963
  • Guo Q, Zhang L, Di Z, et al. Assessing risk category of breast cancer by ultrasound imaging characteristics. Ultrasound Med Biol. 2018;44:815–824. doi:10.1016/j.ultrasmedbio.2017.12.00129331358
  • Niu Z, Tian JW, Ran HT, et al. Risk-predicted dual nomograms consisting of clinical and ultrasound factors for downgrading BI-RADS category 4a breast lesions - a multiple centre study. J Cancer. 2021;12:292–304. doi:10.7150/jca.5130233391426
  • Luo WQ, Huang QX, Huang XW, et al. Predicting breast cancer in Breast Imaging Reporting and Data System (BI-RADS) ultrasound category 4 or 5 Lesions: a nomogram combining radiomics and BI-RADS. Sci Rep. 2019;9:11921. doi:10.1038/s41598-019-48488-431417138
  • Chhatwal J, Alagoz O, Lindstrom MJ, et al. A logistic regression model based on the national mammography database format to aid breast cancer diagnosis. Am J Roentgenol. 2009;192:1117–1127. doi:10.2214/AJR.07.334519304723
  • Wang ZL, Li JL, Li M, et al. Study of quantitative elastography with supersonic shear imaging in the diagnosis of breast tumours. Radiol Med. 2013;118:583–590. doi:10.1007/s11547-012-0903-x23184245
  • Gao LY, Gu Y, Tian JW, et al. Gail model improves the diagnostic performance of the fifth edition of Ultrasound BI-RADS for Predicting Breast Cancer: a multicenter prospective study. Acad Radiol. 2020. doi:10.1016/j.acra.2020.12.002
  • Liberman L, Menell JH. Breast imaging reporting and data system (BI-RADS). Radiol Clin North Am. 2002;40:409–430. doi:10.1016/S0033-8389(01)00017-312117184