113
Views
1
CrossRef citations to date
0
Altmetric
Review

Current Progress in Investigating Mature T- and NK-Cell Lymphoma Gene Aberrations by Next-Generation Sequencing (NGS)

, ORCID Icon, , , , , , , & ORCID Icon show all
Pages 5275-5286 | Published online: 02 Jul 2021

References

  • Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977;74(12):5463–5467. doi:10.1073/pnas.74.12.5463271968
  • Jin S, Zhou C, Hou X, et al. A multicenter real-world study of tumor-derived DNA from pleural effusion supernatant in genomic profiling of advanced lung cancer. Trans Lung Cancer Res. 2020;9(4):1507–1515. doi:10.21037/tlcr-20-882
  • Fang W, Huang Y, Gu W, et al. PI3K-AKT-mTOR pathway alterations in advanced NSCLC patients after progression on EGFR-TKI and clinical response to EGFR-TKI plus everolimus combination therapy. Trans Lung Cancer Res. 2020;9(4):1258–1267. doi:10.21037/tlcr-20-141
  • Chen H, Liu M, Dai Z, et al. EGFRConcomitant genetic alterations are associated with response to targeted therapy in patients with lung adenocarcinoma. Trans Lung Cancer Res. 2020;9(4):1225–1234. doi:10.21037/tlcr-20-679
  • Pareek CS, Smoczynski R, Tretyn A. Sequencing technologies and genome sequencing. J Appl Genet. 2011;52(4):413–435. doi:10.1007/s13353-011-0057-x21698376
  • Muzzey D, Evans E, Lieber C. Understanding the basics of NGS: from mechanism to variant calling. Curr Genet Med Rep. 2015;3(4):158–165. doi:10.1007/s40142-015-0076-826566462
  • Yohe S, Thyagarajan B. Review of clinical next-generation sequencing. Arch Pathol Lab Med. 2017;141(11):1544–1557. doi:10.5858/arpa.2016-0501-RA28782984
  • Choi S, Go JH, Kim EK, Lee H, Han K. Mutational analysis of extranodal NK/T-cell lymphoma using targeted sequencing with a comprehensive cancer. Genomics Inform. 2016;143(3):78–84.
  • Ross JS, Cronin M. Whole cancer genome sequencing by next-generation methods. Am J Clin Pathol. 2011;136(4):527–539. doi:10.1309/AJCPR1SVT1VHUGXW21917674
  • Bewicke-Copley F, Kumar EA, Palladino G, et al. Applications and analysis of targeted genomic sequencing in cancer studies. Comput Struct Biotechnol J. 2019;17:1348–1359. doi:10.1016/j.csbj.2019.10.00431762958
  • Mardis RE. Next-generation sequencing platforms. Ann Rev Anal Chem. 2013;6(1):287–303. doi:10.1146/annurev-anchem-062012-092628
  • Cronin M, Ross JS. Comprehensive next-generation cancer genome sequencing in the era of targeted therapy and personalized oncology. Biomark Med. 2011;5(3):293–305. doi:10.2217/bmm.11.3721657839
  • Wang L, Qin W, Huo YJ, et al. Advances in targeted therapy for malignant lymphoma. Signal Transduct Target Ther. 2020;5:15.32296035
  • Pearson PL, Luijt VD. The genetic analysis of cancer. J Intern Med. 1998;243(6):413–417. doi:10.1046/j.1365-2796.1998.00343.x9681837
  • Feunteun J. [Hereditary predisposition to cancer]. Bull Acad Natl Med. 2005;189(5):797. [ Portugese]16433452
  • Lewis WD, Lilly S, Jones KL. Lymphoma: diagnosis and treatment. Am Fam Physician. 2020;101(1):34–41.31894937
  • Wang H, Balakrishna J, Pittaluga S, Jaffe E. Diagnosis of Hodgkin lymphoma in the modern era. Br J Haematol. 2019;184(1):45–59. doi:10.1111/bjh.1561430407610
  • Xiong J, Zhao WL. Advances in multiple omics of natural-killer/T cell lymphoma. J Hematol Oncol. 2018;11(1):134. doi:10.1186/s13045-018-0678-130514323
  • Araf S, Korfi K, Rahim T, et al. Advances in the molecular diagnosis of diffuse large B-cell lymphoma in the era of precision medicine. Expert Rev Mol Diagn. 2016;16(10):1093–1102. doi:10.1080/14737159.2016.123597427648481
  • McCabe MT, Ott HM, Ganji G. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature. 2012;492(7427):108–112. doi:10.1038/nature1160623051747
  • Dietrich S, Glimm H, Andrulis M, et al. BRAF inhibition in refractory hairy-cell leukemia. N Engl J Med. 2012;366(21):2038–2040. doi:10.1056/NEJMc120212422621641
  • Staber P, Herling M, Bellido M, et al. Consensus criteria for diagnosis, staging, and treatment response assessment of T-cell prolymphocytic leukemia. Blood. 2019;134(14):1132–1143. doi:10.1182/blood.201900040231292114
  • Braun T, von Jan J, Wahnschaffe L, Herling M. Advances and perspectives in the treatment of T-PLL. Curr Hematol Malig Rep. 2020;15(2):113–124. doi:10.1007/s11899-020-00566-532034661
  • Robak T, Robak P. Current treatment options in prolymphocytic leukemia. Med Sci Monit. 2007;13(4):RA69–80.17392661
  • Catovsky D, Okos A, Wiltshaw E, Galetto J, Galton DAG, Stathopoulos G. PRolymphocytic Leukemia of B and T cell type. Lancet. 1973;302(7823):232–234. doi:10.1016/S0140-6736(73)93135-8
  • Hu Z, Medeiros L, Fang L, et al. Prognostic significance of cytogenetic abnormalities in T-cell prolymphocytic leukemia. Am J Hematol. 2017;92(5):441–447. doi:10.1002/ajh.2467928194886
  • Yuille M, Coignet L, Abraham S, et al. ATM is usually rearranged in T-cell prolymphocytic leukaemia. Oncogene. 1998;16(6):789–796.28.9488043
  • Laribi K, Lemaire P, Sandrini J, Baugier de Materre A. Advances in the understanding and management of T-cell prolymphocytic leukemia. Oncotarget. 2017;8(61):104664–104686. doi:10.18632/oncotarget.2227229262669
  • Sellner L, Brüggemann M, Schlitt M, et al. GvL effects in T-prolymphocytic leukemia: evidence from MRD kinetics and TCR repertoire analyses. Bone Marrow Transplant. 2017;52(4):656. doi:10.1038/bmt.2017.1228377595
  • Kiel M, Velusamy T, Rolland D, et al. Integrated genomic sequencing reveals mutational landscape of T-cell prolymphocytic leukemia. Blood. 2014;124(9):1460–1472. doi:10.1182/blood-2014-03-55954224825865
  • Kawamura K, Tanaka Y, Nakasone H, et al. Development of a unique T-cell receptor gene-transferred Tax-redirected T-cell immunotherapy for adult T-cell leukemia. Biol Blood Marrow Transplant. 2020;268(8):1377–1385. doi:10.1016/j.bbmt.2020.04.006
  • Tarokhian H, Rahimi H, Mosavat A, et al. HTLV-1-host interactions on the development of adult T cell leukemia/lymphoma: virus and host gene expressions. BMC Cancer. 2018;18(1):1287. doi:10.1186/s12885-018-5209-530577817
  • Harhaj E, Giam C. NF-κB signaling mechanisms in HTLV-1-induced adult T-cell leukemia/lymphoma. FEBS J. 2018;285(18):3324–3336. doi:10.1111/febs.1449229722927
  • Bonn BR, Huge A, Rohde M, Oschlies I, Burkhardt B. Whole exome sequencing hints at a unique mutational profile of paediatric T-cell lymphoblastic lymphoma. Br J Haematol. 2014;168(2):308–313. doi:10.1111/bjh.1310525160903
  • Kataoka K, Iwanaga M, Yasunaga J, et al. Prognostic relevance of integrated genetic profiling in adult T-cell leukemia/lymphoma. Blood. 2018;131(2):215–225. doi:10.1182/blood-2017-01-76187429084771
  • Laurent C, Nicolae A, Laurent C, et al. Gene alterations in epigenetic modifiers and JAK-STAT signaling are frequent in breast implant-associated ALCL. Blood. 2020;135(5):360–370. doi:10.1182/blood.201900190431774495
  • Li Z, Xia Y, Feng LN, et al. Genetic risk of extranodal natural killer T-cell lymphoma: a genome-wide association study. Lancet Oncol. 2016;17(9):1240–1247. doi:10.1016/S1470-2045(16)30148-627470079
  • Kataoka K, Nagata Y, Kitanaka A. Integrated molecular analysis of adult T cell leukemia/lymphoma. Nat Genet. 2015;47(11):1304–1315. doi:10.1038/ng.341526437031
  • Xiong J, Zhao W. What we should know about natural killer/T-cell lymphomas. Hematol Oncol. 2019;37(S1):75–81. doi:10.1002/hon.2588
  • Avilès AA. Nasal NK/T-cell lymphoma. a comparative analysis of a Mexican population with the other populations of latin-america. Mediterr J Hematol Infect Dis. 2015;7(1):e2015052. doi:10.4084/mjhid.2015.05226401241
  • Asano N, Kato S, Nakamura S. Epstein–Barr virus-associated natural killer/T-cell lymphomas. Best Pract Res Clin Haematol. 2013;26(1):15–21. doi:10.1016/j.beha.2013.04.00223768637
  • Zhang Y, Li C, Xue W, Zhang M, Li Z. Frequent mutations in natural killer/T cell lymphoma. Cell Physiol Biochem. 2018;49(1):1–16. doi:10.1159/00049283530134235
  • Jiang L, Gu Z-H, Yan Z-X, et al. Exome sequencing identifies somatic mutations of DDX3X in natural killer/T-cell lymphoma. Nat Genet. 2015;47(9):1061–1066. doi:10.1038/ng.335826192917
  • Chen B, Jiang L, Zhong ML, et al. Identification of fusion genes and characterization of transcriptome features in T-cell acute lymphoblastic leukemia. Proc Natl Acad Sci U S A. 2018;115(2):373–378.
  • Jiang L, Gu Z-H, Yan Z-X, et al. Exome sequencing identifies somatic mutations of DDX3X in natural killer/T-cell lymphoma. Nat Genet. 124(21).
  • Montes-Mojarro IA, Chen BJ, Ramirez-Ibarguen AF, et al. Mutational profile and EBV strains of extranodal NK/T-cell lymphoma, nasal type in Latin America. Mod Pathol. 2020;335(5):781–791.
  • Kim W, Montes-Mojarro I, Fend F, Quintanilla-Martinez L. Epstein-Barr virus-associated T and NK-cell lymphoproliferative diseases. Front Pediatr. 2019;7:71. doi:10.3389/fped.2019.0007130931288
  • Sim SH, Kim S, Kim TM, Jeon YK, Heo DS. Novel JAK3 -activating mutations in extranodal nk/t-cell lymphoma, nasal type. Am J Pathol. 2017;187(5):5.
  • Sim S, Kim S, Kim T, et al. Novel JAK3-activating mutations in extranodal NK/T-cell lymphoma, nasal type. Am J Pathol. 2017;187(5):980–986. doi:10.1016/j.ajpath.2017.01.00428284718
  • Koo GC, Tan SY, Tang T, et al. Janus kinase 3-activating mutations identified in natural killer/t-cell lymphoma. Cancer Discov. (7):591–597.
  • Koo G, Tan S, Tang T, et al. Janus kinase 3-activating mutations identified in natural killer/T-cell lymphoma. Cancer Discov. 2012;2(7):591–597. doi:10.1158/2159-8290.CD-12-002822705984
  • Küçük C, Wang J, Xiang Y, You H. Epigenetic aberrations in natural killer/T-cell lymphoma: diagnostic, prognostic and therapeutic implications. Ther Adv Med Oncol. 2020;12:1758835919900856. doi:10.1177/175883591990085632127923
  • Kataoka K, Miyoshi H, Sakata S, et al. Frequent structural variations involving programmed death ligands in Epstein-Barr virus-associated lymphomas. Leukemia. 2019;33(7):1687–1699. doi:10.1038/s41375-019-0380-530683910
  • Ferry J. Extranodal lymphoma. Arch Pathol Lab Med. 2008;132(4):565–578. doi:10.5858/2008-132-565-EL18384208
  • Olszewska-Szopa M, Wróbel T. Gastrointestinal non-Hodgkin lymphomas. Adv Clin Exper Med. 2019;28(8):1119–1124. doi:10.17219/acem/9406831414733
  • Hasnaoui H, El Bouhaddouti H, Mouaqit O, Benjelloun E, Ousadden A, Taleb K. [Acute intestinal intussusception revealing intestinal T-cell lymphoma in adults]. Pan Afr Med J. 2019;33:153. doi:10.11604/pamj.2019.33.153.18758 [ Danish]31558950
  • NairismGi ML, Tan J, Lim JQ, et al. JAK-STAT and G protein-coupled receptor signaling pathways are frequently altered in epitheliotropic intestinal T-cell lymphoma. Leukemia. 2016;30(6):1311–1319. doi:10.1038/leu.2016.1326854024
  • Moffitt AB, Ondrejka SL, McKinney M, et al. Enteropathy-associated T cell lymphoma subtypes are characterized by loss of function of SETD2. J Exp Med. 214;5:1371–1386.
  • Pulitzer M. Cutaneous T-cell Lymphoma. Clin Lab Med. 2017;37(3):527–546. doi:10.1016/j.cll.2017.06.00628802499
  • Mehta-Shah N, Horwitz SM, Ansell S. NCCN guidelines insights: primary cutaneous lymphomas, version 2.2020. J Natl Compr Canc Netw. 2020;18(5):522–536. doi:10.6004/jnccn.2020.002232380458
  • Choi J, Goh G, Walradt T, et al. Genomic landscape of cutaneous T cell lymphoma. Nat Genet. 2015;47(9):1011–1019. doi:10.1038/ng.335626192916
  • Larocca C, Kupper T. Mycosis fungoides and Sézary syndrome: an update. Hematol Oncol Clin North Am. 2019;33(1):103–120. doi:10.1016/j.hoc.2018.09.00130497668
  • Yumeen S, Girardi M. Insights into the molecular and cellular underpinnings of cutaneous T cell lymphoma. Yale J Biol Med. 2020;93(1):111–121.32226341
  • Hamrouni A, Fogh H, Zak Z, et al. Clonotypic diversity of the T-cell receptor corroborates the immature precursor origin of cutaneous T-cell lymphoma. Clin Cancer Re. 2019;2510(10):3104–3114.
  • Sud A, Dearden C. T-cell prolymphocytic leukemia[J]. Med Oncol. 2009;23(1):365–371.
  • Kiel M, Sahasrabuddhe A, Rolland D, et al. Genomic analyses reveal recurrent mutations in epigenetic modifiers and the JAK-STAT pathway in Sézary syndrome. Nat Commun. 2015;6(1):8470. doi:10.1038/ncomms947026415585
  • Iżykowska K, Przybylski GK, Gand C, Braun FC, Schmidt CA. Genetic rearrangements result in altered gene expression and novel fusion transcripts in Sézary syndrome. Oncotarget. 2017;8(24):39627. doi:10.18632/oncotarget.1738328489605
  • Almeida ACDS, Abate F, Khiabanian H, Martinez-Escala E, Palomero T. The mutational landscape of cutaneous T cell lymphoma and Sézary syndrome. Nat Genet. 2015;47:12.
  • Wang L, Ni X, Covington K, et al. Genomic profiling of Sézary syndrome identifies alterations of key T cell signaling and differentiation genes. Nat Genet. 2015;47(12):1426–1434. doi:10.1038/ng.344426551670
  • Brouwer I, Out-Luiting J, Vermeer M, Tensen C. Cucurbitacin E and I target the JAK/STAT pathway and induce apoptosis in Sézary cells. Biochem Biophy Rep. 2020;24:100832. doi:10.1016/j.bbrep.2020.100832
  • Alexander-Savino C, Hayden M, Richardson C, Zhao J, Poligone B. Doxycycline is an NF-κB inhibitor that induces apoptotic cell death in malignant T-cells. Oncotarget. 2016;7(46):75954–75967. doi:10.18632/oncotarget.1248827732942
  • Gros A, Laharanne E, Vergier M, et al. TP53 alterations in primary and secondary Sézary syndrome: a diagnostic tool for the assessment of malignancy in patients with erythroderma. PLoS One. 2017;12(3):e0173171. doi:10.1371/journal.pone.017317128301507
  • Chevret E, Merlio JP. Sézary syndrome: translating genetic diversity into personalized medicine. J Invest Dermatol. 2016;136(7):1319–1324. doi:10.1016/j.jid.2016.04.02727342034
  • Ramachandran V, Park KE, Torres‐Cabala CA. Second primary malignancies in subcutaneous panniculitis-like T-cell lymphoma: a national database study. Clin Exp Dermatol. 2020;456(6).
  • Li Z, Lu L, Zhou Z, et al. Recurrent mutations in epigenetic modifiers and the PI3K/AKT/mTOR pathway in subcutaneous panniculitis-like T-cell lymphoma. Br J Haematol. 2018;181(3):406–410. doi:10.1111/bjh.1461128294301
  • Zhang Y, Xu W, Liu H, Li J. Therapeutic options in peripheral T cell lymphoma. J Hematol Oncol. 2016;9(1):37. doi:10.1186/s13045-016-0267-027071634
  • Somerville T, Xu Y, Miyabayashi K, et al. TP63-mediated enhancer reprogramming drives the squamous subtype of pancreatic ductal adenocarcinoma. Cell Rep. 2018;25(7):1741–1755.e1747. doi:10.1016/j.celrep.2018.10.05130428345
  • Ratovitski E, Patturajan M, Hibi K, Trink B, Yamaguchi K, Sidransky D. p53 associates with and targets Delta Np63 into a protein degradation pathway. Proc Natl Acad Sci U S A. 2001;98(4):1817–1822. doi:10.1073/pnas.98.4.181711172034
  • Vasmatzis G, Johnson SH, Knudson RA. Genome-wide analysis reveals recurrent structural abnormalities of TP63 and other p53-related genes in peripheral T-cell lymphomas. Blood. 2012;120(11):2280–2289. doi:10.1182/blood-2012-03-41993722855598
  • Andersson EI, Brück O, Braun T, et al. STAT3 mutation is associated with STAT3 activation in CD30+ ALK ALCL[J]. Cancers. 2020;12(3):702. doi:10.3390/cancers12030702
  • Fujisawa M, Chiba S, Sakata-Yanagimoto M. Recent progress in the understanding of angioimmunoblastic T-cell lymphoma. J Clin Exper Hematopathol. 2017;57(3):109–119. doi:10.3960/jslrt.17019
  • Fukumoto K, Nguyen T, Chiba S, Sakata-Yanagimoto M. Review of the biologic and clinical significance of genetic mutations in angioimmunoblastic T-cell lymphoma. Cancer Sci. 2018;109(3):490–496. doi:10.1111/cas.1339328889481
  • Fujisawa M, Sakata-Yanagimoto M, Nishizawa S, et al. Activation of RHOA-VAV1 signaling in angioimmunoblastic T-cell lymphoma. Leukemia. 2018;32(3):694–702. doi:10.1038/leu.2017.27328832024
  • Feng Y, Li X, Cassady K, Zou Z, Zhang X. TET2 function in hematopoietic malignancies, immune regulation, and DNA repair. Front Oncol. 2019;9:210. doi:10.3389/fonc.2019.0021031001476
  • Chiba S, Enami T, Ogawa S, Sakata-Yanagimoto M. G17V RHOA: genetic evidence of GTP-unbound RHOA playing a role in tumorigenesis in T cells. Small GTPases. 2015;6(2):100–103. doi:10.4161/21541248.2014.98808826103434
  • Sakata-Yanagimoto M, Enami T, Yoshida K, et al. Somatic RHOA mutation in angioimmunoblastic T cell lymphoma. Nat Genet. 2014;46(2):171–175. doi:10.1038/ng.287224413737
  • Tanzima Nuhat S, Sakata‐Yanagimoto M, Komori D, et al. Droplet digital polymerase chain reaction assay and peptide nucleic acid-locked nucleic acid clamp method for RHOA mutation detection in angioimmunoblastic T-cell lymphoma. Cancer Sci. 2018;109(5):1682–1689. doi:10.1111/cas.1355729493850
  • Vallois D, Dobay M, Morin R, et al. Activating mutations in genes related to TCR signaling in angioimmunoblastic and other follicular helper T-cell-derived lymphomas. Blood. 2016;128(11):1490–1502.27369867
  • Vallois D, Dobay MPD, Morin RD. Activating mutations in genes related to TCR signaling in angioimmunoblastic and other follicular helper T-cell-derived lymphomas. Blood. 2016;128(11):1490–1502. doi:10.1182/blood-2016-02-69897727369867
  • Rohr J, Guo S, Huo J, et al. Recurrent activating mutations of CD28 in peripheral T-cell lymphomas. Leukemia. 2016;30(5):1062–1070. doi:10.1038/leu.2015.35726719098
  • Tsuyama N, Sakamoto K, Sakata S, Dobashi A, Takeuchi K. Anaplastic large cell lymphoma: pathology, genetics, and clinical aspects. J Clin Exper Hematopathol. 2017;57(3):120–142. doi:10.3960/jslrt.17023
  • Luchtel R, Zimmermann M, Hu G, et al. MSCRecurrent mutations in ALK-negative anaplastic large cell lymphoma. Blood. 2019;133(26):2776–2789. doi:10.1182/blood.201900062631101622
  • Merkel O, Hamacher F, Laimer D, et al. Identification of differential and functionally active miRNAs in both anaplastic lymphoma kinase (ALK)+ and ALK- anaplastic large-cell lymphoma. Proc Natl Acad Sci U S A. 2010;107(37):16228–16233. doi:10.1073/pnas.100971910720805506
  • Julia S, Michael B, Michael W, Falko F, Irina B, Leticia QM. Next-generation sequencing identifies deregulation of microRNAs involved in both innate and adaptive immune response in ALK+ ALCL. PLoS One. 2015;10(2):e0117780.25688981
  • Sharma B, Jurgensen-Rauch A, Pace E, et al. Breast implant-associated anaplastic large cell lymphoma: review and multiparametric imaging paradigms. Radiographics. 2020;40(3):609–628. doi:10.1148/rg.202019019832302264
  • Jaffe ES, Ashar BS, Clemens MW, et al. Best practices guideline for the pathologic diagnosis of breast implant-associated anaplastic large-cell lymphoma. J Clin Oncol. 2020;38(10):1102–1111. doi:10.1200/JCO.19.0277832045544
  • Kogure Y, Kataoka K. Genetic alterations in adult T-cell leukemia/lymphoma. Cancer Sci. 2017;108(9):1719–1725. doi:10.1111/cas.1330328627735
  • Blombery P, Thompson ER, Jones K, et al. Whole exome sequencing reveals activating JAK1 and STAT3 mutations in breast implant-associated anaplastic large cell lymphoma anaplastic large cell lymphoma. Haematologica. 2016;101(9):e387–e390. doi:10.3324/haematol.2016.14611827198716
  • Blombery P, Thompson E, Ryland GL, et al. Frequent activating STAT3 mutations and novel recurrent genomic abnormalities detected in breast implant-associated anaplastic large cell lymphoma. Oncotarget. 2018;9(90):36126–36136. doi:10.18632/oncotarget.2630830546832