129
Views
3
CrossRef citations to date
0
Altmetric
Original Research

Characterization of AKT Somatic Mutations in Chinese Breast Cancer Patients

, , , , , , , , , ORCID Icon, ORCID Icon, , , ORCID Icon, , ORCID Icon, ORCID Icon, & show all
Pages 3055-3065 | Published online: 07 Apr 2021

References

  • Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–E386. doi:10.1002/ijc.2921025220842
  • Ginsburg O, Bray F, Coleman MP, et al. The global burden of women’s cancers: a grand challenge in global health. Lancet. 2017;389:847–860. doi:10.1016/S0140-6736(16)31392-727814965
  • Rui-Mei, Feng, Yi-Nan, et al. Current cancer situation in China: good or bad news from the 2018 Global Cancer Statistics? Cancer Commun. 2019;39:22–34. doi:10.1186/s40880-019-0368-6
  • Garraway LA. Genomics-driven oncology: framework for an emerging paradigm. J Clin Oncol. 2013;31:1806–1814. doi:10.1200/JCO.2012.46.893423589557
  • Nicholson KM, Anderson NG. The protein kinase B/Akt signalling pathway in human malignancy. Cell Signal. 2002;14:381–395. doi:10.1016/s0898-6568(01)00271-611882383
  • Bozhanov SS, Angelova SG, Krasteva ME, et al. Alterations in p53, BRCA1, ATM, PIK3CA, and HER2 genes and their effect in modifying clinicopathological characteristics and overall survival of Bulgarian patients with breast cancer. J Cancer Res Clin Oncol. 2010;136:1657–1669. doi:10.1007/s00432-010-0824-920177704
  • Chu N, Viennet T, Bae H, et al. The structural determinants of PH domain-mediated regulation of Akt revealed by segmental labeling. eLife. 2020:9. doi:10.7554/eLife.59151
  • Grille S, Bellacosa A, Upson J, et al. The protein kinase Akt induces epithelial mesenchymal transition and promotes enhanced motility and invasiveness of squamous cell carcinoma lines. Cancer Res. 2003;63:2172–2178.12727836
  • Tokunaga E, Kimura Y, Oki E, et al. Akt is frequently activated in HER2/neu-positive breast cancers and associated with poor prognosis among hormone-treated patients. Int J Cancer. 2010;118:284–289. doi:10.1002/ijc.21358
  • Network TCGA. Comprehensive molecular portraits of human breast tumors. Nature. 2012;490:61–70. doi:10.1038/nature1141223000897
  • Futreal PA, Chin L, Andersen JN. Cancer genomics: from discovery science to personalized medicine. Nat Med. 2011;17:297–303. doi:10.1038/nm.232321383744
  • Blum A, Wang P, Zenklusen JC. SnapShot: TCGA-analyzed tumors. Cell. 2018;173:530. doi:10.1016/j.cell.2018.03.05929625059
  • Spratt DE, Chan T, Waldron L, et al. Racial/ethnic disparities in genomic sequencing. JAMA Oncol. 2016;2:1070–1074. doi:10.1001/jamaoncol.2016.185427366979
  • López-Knowles E, O’Toole S, McNeil C, et al. PI3K pathway activation in breast cancer is associated with the basal-like phenotype and cancer-specific mortality. Int J Cancer. 2010;126:1121–1131. doi:10.1002/ijc.2483119685490
  • Araki K, Miyoshi Y. Mechanism of resistance to endocrine therapy in breast cancer: the important role of PI3K/Akt/mTOR in estrogen receptor-positive, HER2-negative breast cancer. Breast Cancer. 2018;25:392–401. doi:10.1007/s12282-017-0812-x29086897
  • Wolff A, Hammond M, Allison K, et al. Human epidermal growth factor Receptor 2 testing in breast cancer: american Society of Clinical Oncology/College of American pathologists clinical practice guideline focused update. J Clin Oncol. 2018;36:2105–2122. doi:10.1200/jco.2018.77.873829846122
  • Zhang X, Liang Z, Wang S, et al. Application of next-generation sequencing technology to precision medicine in cancer: joint consensus of the Tumor Biomarker Committee of the Chinese Society of Clinical Oncology. Cancer Biol Med. 2019;16:189–204. doi:10.20892/j.issn.2095-3941.2018.014231119060
  • Mao X, Zhang Z, Zheng X, et al. Capture-based targeted ultradeep sequencing in paired tissue and plasma samples demonstrates differential subclonal ctDNA-releasing capability in advanced lung cancer. J Thorac Oncol. 2017;12:663–672. doi:10.1016/j.jtho.2016.11.223528007624
  • Li YS, Jiang BY, Yang JJ, et al. Unique genetic profiles from cerebrospinal fluid cell-free DNA in leptomeningeal metastases of EGFR-mutant non-small-cell lung cancer: a new medium of liquid biopsy. Ann Oncol. 2018;29:945–952. doi:10.1093/annonc/mdy00929346604
  • Xie Z, Liu L, Lin X, Xie X, Qin Y. A multicenter analysis of genomic profiles and PD-L1 expression of primary lymphoepithelioma-like carcinoma of the lung. Modern Pathol. 2019;33:626–638. doi:10.1038/s41379-019-0391-9
  • Askham JM, Platt F, Chambers PA, Snowden H, Taylor CF, Knowles MA. AKT1 mutations in bladder cancer: identification of a novel oncogenic mutation that can co-operate with E17K. Oncogene. 2010;29:150–155. doi:10.1038/onc.2009.31519802009
  • Carpten J, Faber A, Horn C, et al. A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature. 2007;448:439–444. doi:10.1038/nature0593317611497
  • Downward J. Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer. 2003;3:11–22. doi:10.1038/nrc96912509763
  • Tamura K, Hashimoto J, Tanabe Y, et al. Safety and tolerability of AZD5363 in Japanese patients with advanced solid tumors. Cancer Chemother Pharmacol. 2016;77:1–9. doi:10.1007/s00280-016-2987-926703129
  • Nitulescu GM, Margina D, Juzenas P, Peng Q, Tsatsakis AM. Akt inhibitors in cancer treatment: the long journey from drug discovery to clinical use (Review). Int J Oncol. 2016;48:869–885. doi:10.3892/ijo.2015.330626698230
  • Banerji U, Dean E, Pérez-Fidalgo J, et al. PIK3CAA Phase I open-label study to identify a dosing regimen of the Pan-AKT inhibitor AZD5363 for evaluation in solid tumors and in -mutated breast and gynecologic cancers. Clin Cancer Res. 2018;24:2050–2059. doi:10.1158/1078-0432.ccr-17-226029066505
  • Dean E, Banerji U, Schellens JHM, et al. A Phase 1, open-label, multicentre study to compare the capsule and tablet formulations of AZD5363 and explore the effect of food on the pharmacokinetic exposure, safety and tolerability of AZD5363 in patients with advanced solid malignancies: OAK. Cancer Chemother Pharmacol. 2018;81:873–883. doi:10.1007/s00280-018-3558-z29541803
  • Schmid P, Wheatley D, Baird R, et al. Abstract OT1-03-13: a Phase II, double blind, randomised, placebo-controlled study of the AKT Inhibitor AZD5363 in combination with paclitaxel in triple-negative advanced or metastatic breast cancer (TNBC)(NCT02423603). Cancer Res. 2016;76:OT1-03-13-OT01-03-13.
  • Rinnerthaler G, Gampenrieder SP, Greil R. ASCO 2018 highlights: metastatic breast cancer. Magazine Eur Med Oncol. 2018;11:276–279. doi:10.1007/s12254-018-0450-9
  • Wu W, Chen Y, Huang L, Li W, Tao C, Shen H. Effects of AKT1 E17K mutation hotspots on the biological behavior of breast cancer cells. Int J Clin Exp Pathol. 2020;13:332–346.32269671
  • Cizkova M, Vacher S, Meseure D, Trassard M, Bièche I. PIK3R1 underexpression is an independent prognostic marker in breast cancer. BMC Cancer. 2013;13:545. doi:10.1186/1471-2407-13-54524229379
  • Stemke-Hale K, Gonzalez-Angulo AM, Lluch A, et al. An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. Cancer Res. 2008;68:6084–6091. doi:10.1158/0008-5472.CAN-07-685418676830
  • Jansen VM, Mayer IA, Arteaga CL. Is there a future for AKT inhibitors in the treatment of cancer? Clin Cancer Res. 2016;22:2599–2601. doi:10.1158/1078-0432.CCR-16-010026979397
  • Landgraf K, Pilling C, Falke J. Molecular mechanism of an oncogenic mutation that alters membrane targeting: glu17Lys modifies the PIP lipid specificity of the AKT1 PH domain. Biochemistry. 2008;47:12260–12269. doi:10.1021/bi801683k18954143
  • Kumar A, Purohit R. Cancer associated E17K mutation causes rapid conformational drift in AKT1 pleckstrin homology (PH) domain. PLoS One. 2013;8:e64364. doi:10.1371/journal.pone.006436423741320
  • Hyman DM, Smyth LM, Donoghue MTA, Westin SN, Taylor BS. AKT inhibition in solid tumors with AKT1 mutations. J Clin Oncol. 2017;35:2251–2259. doi:10.1200/JCO.2017.73.014328489509
  • Slamon D, Clark G, Wong S, Levin W, Ullrich A, Mcguire W. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235:177–182. doi:10.1126/science.37981063798106
  • Alaoui-Jamali MA, Paterson J, Moustafa AEA, Yen L. The role of ErbB-2 tyrosine kinase receptor in cellular intrinsic chemoresistance: mechanisms and implications. Biochem Cell Biol/Biochimie Et Biologie Cellulaire. 1997;75:315–325. doi:10.1139/o97-0609493954
  • Cui X, Zhang P, Deng W, et al. Insulin-like growth factor-I inhibits progesterone receptor expression in breast cancer cells via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin pathway: progesterone receptor as a potential indicator of growth factor activity in breast cancer. Mol Endocrinol. 2003;17:575–588. doi:10.1210/me.2002-031812554765