150
Views
8
CrossRef citations to date
0
Altmetric
Original Research

Value of Machine Learning with Multiphases CE-MRI Radiomics for Early Prediction of Pathological Complete Response to Neoadjuvant Therapy in HER2-Positive Invasive Breast Cancer

, ORCID Icon, , , ORCID Icon &
Pages 5053-5062 | Published online: 28 Jun 2021

References

  • Agner SC , Rosen MA , Englander S , et al. Computerized image analysis for identifying triple-negative breast cancers and differentiating them from other molecular subtypes of breast cancer on dynamic contrast-enhanced MR images: a feasibility study. Radiology . 2014;272(1):91–99. doi:10.1148/radiol.14121031 24620909
  • Lee HJ , Park IA , Park SY , et al. Two histopathologically different diseases: hormone receptor-positive and hormone receptor-negative tumors in HER2-positive breast cancer. Breast Cancer Res Treat . 2014;145(3):615–623. doi:10.1007/s10549-014-2983-x 24820412
  • Steenbruggen TG , van Ramshorst MS , Kok M , Linn SC , Smorenburg CH , Sonke GS . Neoadjuvant therapy for breast cancer: established concepts and emerging strategies. Drugs . 2017;77(12):1313–1336.28616845
  • von Minckwitz G , Untch M , Blohmer JU , et al. Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. J Clin Oncol . 2012;30(15):1796–1804. doi:10.1200/JCO.2011.38.8595 22508812
  • Cortazar P , Zhang L , Untch M , et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet . 2014;384(9938):164–172. doi:10.1016/S0140-6736(13)62422-8 24529560
  • Spring L , Greenup R , Niemierko A , et al. Pathologic complete response after neoadjuvant chemotherapy and long-term outcomes among young women with breast cancer. J Natl Compr Canc Netw . 2017;15(10):1216–1223. doi:10.6004/jnccn.2017.0158 28982747
  • Slamon D , Eiermann W , Robert N , et al. Adjuvant trastuzumab in HER2-positive breast cancer. N Engl J Med . 2011;365(14):1273–1283. doi:10.1056/NEJMoa0910383 21991949
  • Perez EA , Romond EH , Suman VJ , et al. Trastuzumab plus adjuvant chemotherapy for human epidermal growth factor receptor 2-positive breast cancer: planned joint analysis of overall survival from NSABP B-31 and NCCTG N9831. J Clin Oncol . 2014;32(33):3744–3752. doi:10.1200/JCO.2014.55.5730 25332249
  • Asselain B , Barlow W , Bartlett J . Long-term outcomes for neoadjuvant versus adjuvant chemotherapy in early breast cancer: meta-analysis of individual patient data from ten randomised trials. Lancet Oncol . 2018;19(1):27–39. doi:10.1016/S1470-2045(17)30777-5 29242041
  • Yeh E , Slanetz P , Kopans DB , et al. Prospective comparison of mammography, sonography, and MRI in patients undergoing neoadjuvant chemotherapy for palpable breast cancer. AJR Am J Roentgenol . 2005;184(3):868–877. doi:10.2214/ajr.184.3.01840868 15728611
  • Rosen EL , Blackwell KL , Baker JA , et al. Accuracy of MRI in the detection of residual breast cancer after neoadjuvant chemotherapy. AJR Am J Roentgenol . 2003;181(5):1275–1282. doi:10.2214/ajr.181.5.1811275 14573420
  • Liu Z , Li Z , Qu J , et al. Radiomics of multiparametric MRI for pretreatment prediction of pathologic complete response to neoadjuvant chemotherapy in breast cancer: a multicenter study. Clin Cancer Res . 2019;25(12):3538–3547. doi:10.1158/1078-0432.CCR-18-3190 30842125
  • Parikh J , Selmi M , Charles-Edwards G , et al. Changes in primary breast cancer heterogeneity may augment midtreatment MR imaging assessment of response to neoadjuvant chemotherapy. Radiology . 2014;272(1):100–112. doi:10.1148/radiol.14130569 24654970
  • Braman NM , Etesami M , Prasanna P , et al. Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI. Breast Cancer Res . 2017;19(1):57. doi:10.1186/s13058-017-0846-1 28521821
  • Teruel JR , Heldahl MG , Goa PE , et al. Dynamic contrast-enhanced MRI texture analysis for pretreatment prediction of clinical and pathological response to neoadjuvant chemotherapy in patients with locally advanced breast cancer. NMR Biomed . 2014;27(8):887–896. doi:10.1002/nbm.3132 24840393
  • Thibault G , Tudorica A , Afzal A , et al. DCE-MRI texture features for early prediction of breast cancer therapy response. Tomography . 2017;3(1):23–32. doi:10.18383/j.tom.2016.00241 28691102
  • Golden DI , Lipson JA , Telli ML , Ford JM , Rubin DL . Dynamic contrast-enhanced MRI-based biomarkers of therapeutic response in triple-negative breast cancer. J Am Med Inform Assoc . 2013;20(6):1059–1066. doi:10.1136/amiajnl-2012-001460 23785100
  • Michoux N , Van den Broeck S , Lacoste L , et al. Texture analysis on MR images helps predicting non-response to NAC in breast cancer. BMC Cancer . 2015;15:574. doi:10.1186/s12885-015-1563-8 26243303
  • Nilsen L , Fangberget A , Geier O , Olsen DR , Seierstad T . Diffusion-weighted magnetic resonance imaging for pretreatment prediction and monitoring of treatment response of patients with locally advanced breast cancer undergoing neoadjuvant chemotherapy. Acta Oncol . 2010;49(3):354–360. doi:10.3109/02841861003610184 20397769
  • Chamming’s F , Ueno Y , Ferré R , et al. Features from computerized texture analysis of breast cancers at pretreatment MR imaging are associated with response to neoadjuvant chemotherapy. Radiology . 2018;286(2):412–420. doi:10.1148/radiol.2017170143 28980886
  • Fan M , Wu G , Cheng H , Zhang J , Shao G , Li L . Radiomic analysis of DCE-MRI for prediction of response to neoadjuvant chemotherapy in breast cancer patients. Eur J Radiol . 2017;94:140–147. doi:10.1016/j.ejrad.2017.06.019 28712700
  • Minarikova L , Bogner W , Pinker K , et al. Investigating the prediction value of multiparametric magnetic resonance imaging at 3 T in response to neoadjuvant chemotherapy in breast cancer. Eur Radiol . 2017;27(5):1901–1911. doi:10.1007/s00330-016-4565-2 27651141
  • Liu Z , Wang S , Dong D , et al. The applications of radiomics in precision diagnosis and treatment of oncology: opportunities and challenges. Theranostics . 2019;9(5):1303–1322. doi:10.7150/thno.30309 30867832
  • Gillies RJ , Kinahan PE , Hricak H . Radiomics: images are more than pictures, they are data. Radiology . 2016;278(2):563–577. doi:10.1148/radiol.2015151169 26579733
  • Cain EH , Saha A , Harowicz MR , Marks JR , Marcom PK , Mazurowski MA . Multivariate machine learning models for prediction of pathologic response to neoadjuvant therapy in breast cancer using MRI features: a study using an independent validation set. Breast Cancer Res Treat . 2019;173(2):455–463. doi:10.1007/s10549-018-4990-9 30328048
  • Xie T , Wang Z , Zhao Q , et al. Machine learning-based analysis of MR multiparametric radiomics for the subtype classification of breast cancer. Front Oncol . 2019;9:505. doi:10.3389/fonc.2019.00505 31259153
  • Li Q , Xiao Q , Li J , et al. MRI-based radiomic signature as a prognostic biomarker for HER2-positive invasive breast cancer treated with NAC. Cancer Manag Res . 2020;12:10603–10613. doi:10.2147/CMAR.S271876 33149669
  • De Cecco CN , Ganeshan B , Ciolina M , et al. Texture analysis as imaging biomarker of tumoral response to neoadjuvant chemoradiotherapy in rectal cancer patients studied with 3-T magnetic resonance. Invest Radiol . 2015;50(4):239–245. doi:10.1097/RLI.0000000000000116 25501017
  • Morrow M . Personalizing extent of breast cancer surgery according to molecular subtypes. Breast . 2013;22(Suppl 2):S106–109. doi:10.1016/j.breast.2013.07.020 24074769
  • Pekar G , Hofmeyer S , Tabár L , et al. Multifocal breast cancer documented in large-format histology sections: long-term follow-up results by molecular phenotypes. Cancer . 2013;119(6):1132–1139. doi:10.1002/cncr.27877 23279980
  • Yang WT , Zhu XZ . [The introduction of 2012 WHO classification of tumours of the breast]. Zhonghua Bing Li Xue Za Zhi . 2013;42(2):78–80. Chinese. doi:10.3760/cma.j.issn.0529-5807.2013.02.002 23710911
  • Koh J , Park AY , Ko KH , Jung HK . Can enhancement types on preoperative MRI reflect prognostic factors and surgical outcomes in invasive breast cancer? Eur Radiol . 2019;29(12):7000–7008. doi:10.1007/s00330-019-06236-2 31187220
  • Masuda N , Lee SJ , Ohtani S , et al. Adjuvant capecitabine for breast cancer after preoperative chemotherapy. N Engl J Med . 2017;376(22):2147–2159. doi:10.1056/NEJMoa1612645 28564564
  • Ford J , Dogan N , Young L , Yang F . Quantitative radiomics: impact of pulse sequence parameter selection on MRI-based textural features of the brain. Contrast Media Mol Imaging . 2018;2018:1729071. doi:10.1155/2018/1729071 30154684
  • Molina D , Pérez-Beteta J , Martínez-González A , et al. Lack of robustness of textural measures obtained from 3D brain tumor MRIs impose a need for standardization. PLoS One . 2017;12(6):e0178843. doi:10.1371/journal.pone.0178843 28586353
  • Depeursinge A , Foncubierta-Rodriguez A , Van De Ville D , Müller H . Three-dimensional solid texture analysis in biomedical imaging: review and opportunities. Med Image Anal . 2014;18(1):176–196. doi:10.1016/j.media.2013.10.005 24231667
  • Cui Y , Yang X , Shi Z , et al. Radiomics analysis of multiparametric MRI for prediction of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Eur Radiol . 2019;29(3):1211–1220. doi:10.1007/s00330-018-5683-9 30128616