98
Views
4
CrossRef citations to date
0
Altmetric
Review

Prognostic Alternative Splicing Signatures in Esophageal Carcinoma

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 4509-4527 | Published online: 04 Jun 2021

References

  • Siegel RL , Miller KD , Jemal A . Cancer statistics, 2016. CA Cancer J Clin . 2016;66(1):7–30. doi:10.3322/caac.21332 26742998
  • Fitzmaurice C , Dicker D , Pain A , et al. The global burden of cancer 2013. JAMA Oncol . 2015;1(4):505–527. doi:10.1001/jamaoncol.2015.0735 26181261
  • Arnold M , Soerjomataram I , Ferlay J , et al. Global incidence of oesophageal cancer by histological subtype in 2012. Gut . 2015;64(3):381–387. doi:10.1136/gutjnl-2014-308124 25320104
  • Chen W , Zheng R , Baade PD , et al. Cancer statistics in China, 2015. CA Cancer J Clin . 2016;66(2):115–132. doi:10.3322/caac.21338 26808342
  • Pennathur A , Gibson MK , Jobe BA , et al. Oesophageal carcinoma. Lancet . 2013;381(9864):400–412. doi:10.1016/S0140-6736(12)60643-6 23374478
  • Napier KJ , Scheerer M , Misra S . Esophageal cancer: a review of epidemiology, pathogenesis, staging workup and treatment modalities. World J Gastrointest Oncol . 2014;6(5):112–120. doi:10.4251/wjgo.v6.i5.112 24834141
  • Smyth EC , Lagergren J , Fitzgerald RC , et al. Oesophageal cancer. Nat Rev Dis Primers . 2017;3:17048.28748917
  • Xiong HY , Alipanahi B , Lee LJ , et al. RNA splicing. The human splicing code reveals new insights into the genetic determinants of disease. Science . 2015;347(6218):1254806. doi:10.1126/science.1254806 25525159
  • Matera AG , Wang Z . A day in the life of the spliceosome. Nat Rev Mol Cell Biol . 2014;15(2):108–121. doi:10.1038/nrm3742 24452469
  • Wang ET , Sandberg R , Luo S , et al. Alternative isoform regulation in human tissue transcriptomes. Nature . 2008;456(7221):470–476. doi:10.1038/nature07509 18978772
  • Kalsotra A , Cooper TA . Functional consequences of developmentally regulated alternative splicing. Nat Rev Genet . 2011;12(10):715–729. doi:10.1038/nrg3052 21921927
  • Gamazon ER , Stranger BE . Genomics of alternative splicing: evolution, development and pathophysiology. Hum Genet . 2014;133(6):679–687. doi:10.1007/s00439-013-1411-3 24378600
  • Song X , Zeng Z , Wei H , et al. Alternative splicing in cancers: from aberrant regulation to new therapeutics. Semin Cell Dev Biol . 2018;75:13–22. doi:10.1016/j.semcdb.2017.09.018 28919308
  • David CJ , Manley JL . Alternative pre-mRNA splicing regulation in cancer: pathways and programs unhinged. Genes Dev . 2010;24(21):2343–2364. doi:10.1101/gad.1973010 21041405
  • Oltean S , Bates DO . Hallmarks of alternative splicing in cancer. Oncogene . 2014;33(46):5311–5318. doi:10.1038/onc.2013.533 24336324
  • Sveen A , Kilpinen S , Ruusulehto A , et al. Aberrant RNA splicing in cancer; expression changes and driver mutations of splicing factor genes. Oncogene . 2016;35(19):2413–2427.26300000
  • Ladomery M . Aberrant alternative splicing is another hallmark of cancer. Int J Cell Biol . 2013;2013:463786. doi:10.1155/2013/463786 24101931
  • Katz Y , Wang ET , Airoldi EM , et al. Analysis and design of RNA sequencing experiments for identifying isoform regulation. Nat Methods . 2010;7(12):1009–1015. doi:10.1038/nmeth.1528 21057496
  • Ding J , Li C , Cheng Y , et al. Alterations of RNA splicing patterns in esophagus squamous cell carcinoma. Cell Biosci . 2021;11(1):36. doi:10.1186/s13578-021-00546-z 33563334
  • Mao S , Li Y , Lu Z , et al. Survival-associated alternative splicing signatures in esophageal carcinoma. Carcinogenesis . 2019;40(1):121–130. doi:10.1093/carcin/bgy123 30304323
  • Li Y , Yuan Y . Alternative RNA splicing and gastric cancer. Mutat Res . 2017;773:263–273. doi:10.1016/j.mrrev.2016.07.011 28927534
  • Koyama S , Maruyama T , Adachi S . Expression of epidermal growth factor receptor and CD44 splicing variants sharing exons 6 and 9 on gastric and esophageal carcinomas: a two-color flow-cytometric analysis. J Cancer Res Clin Oncol . 1999;125(1):47–54. doi:10.1007/s004320050241 10037277
  • Lin J , Lin L , Thomas DG , et al. Melanoma-associated antigens in esophageal adenocarcinoma: identification of novel MAGE-A10 splice variants. Clin Cancer Res . 2004;10(17):5708–5716. doi:10.1158/1078-0432.CCR-04-0468 15355897
  • Fang WK , Xu L-Y , Lu XF , et al. A novel alternative spliced variant of neutrophil gelatinase-associated lipocalin receptor in oesophageal carcinoma cells. Biochem J . 2007;403(2):297–303. doi:10.1042/BJ20060836 17253959
  • Shen Q , Nam SW . SF3B4 as an early-stage diagnostic marker and driver of hepatocellular carcinoma. BMB Rep . 2018;51(2):57–58. doi:10.5483/BMBRep.2018.51.2.021 29397868
  • Kidogami S , Iguchi T , Sato K , et al. SF3B4 plays an oncogenic role in esophageal squamous cell carcinoma. Anticancer Res . 2020;40(5):2941–2946. doi:10.21873/anticanres.14272 32366446
  • Bisognin A , Pizzini S , Perilli L , et al. An integrative framework identifies alternative splicing events in colorectal cancer development. Mol Oncol . 2014;8(1):129–141. doi:10.1016/j.molonc.2013.10.004 24189147
  • Zou HY , Lv G-Q , Dai L-H , et al. A truncated splice variant of human lysyl oxidase-like 2 promotes migration and invasion in esophageal squamous cell carcinoma. Int J Biochem Cell Biol . 2016;75:85–98. doi:10.1016/j.biocel.2016.04.003 27063404
  • Dickinson A , Saraswat M , Mäkitie A , et al. Label-free tissue proteomics can classify oral squamous cell carcinoma from healthy tissue in a stage-specific manner. Oral Oncol . 2018;86:206–215. doi:10.1016/j.oraloncology.2018.09.013 30409303
  • Song ZB , Gao SS , Yi XN , et al. Expression of MUC1 in esophageal squamous-cell carcinoma and its relationship with prognosis of patients from Linzhou city, a high incidence area of northern China. World J Gastroenterol . 2003;9(3):404–407. doi:10.3748/wjg.v9.i3.404 12632485
  • Bessman MJ , Frick DN , O’Handley SF . The MutT proteins or “Nudix” hydrolases, a family of versatile, widely distributed, “housecleaning” enzymes. J Biol Chem . 1996;271(41):25059–25062. doi:10.1074/jbc.271.41.25059 8810257
  • Yang S , Jia R , Bian Z . SRSF5 functions as a novel oncogenic splicing factor and is upregulated by oncogene SRSF3 in oral squamous cell carcinoma. Biochim Biophys Acta Mol Cell Res . 2018;1865(9):1161–1172. doi:10.1016/j.bbamcr.2018.05.017 29857020
  • Yu Q , Yin L , Jian Y , et al. Downregulation of PHF6 inhibits cell proliferation and migration in hepatocellular carcinoma. Cancer Biother Radiopharm . 2019;34(4):245–251. doi:10.1089/cbr.2018.2671 30888215
  • Rekasi Z , Varga JL , Schally AV , et al. Antagonists of growth hormone-releasing hormone and vasoactive intestinal peptide inhibit tumor proliferation by different mechanisms: evidence from in vitro studies on human prostatic and pancreatic cancers 1. Endocrinology . 2000;141(6):2120–2128. doi:10.1210/endo.141.6.7511 10830299
  • Ogura Y , Hoshino T , Tanaka N , et al. Disturbed alternative splicing of FIR (PUF60) directed cyclin E overexpression in esophageal cancers. Oncotarget . 2018;9(33):22929–22944. doi:10.18632/oncotarget.25149 29796163
  • Lu F , Gladden AB , Diehl JA . An alternatively spliced cyclin D1 isoform, cyclin D1b, is a nuclear oncogene. Cancer Res . 2003;63(21):7056–7061.14612495
  • Peach RJ , Hollenbaugh D , Stamenkovic I , et al. Identification of hyaluronic acid binding sites in the extracellular domain of CD44. J Cell Biol . 1993;122(1):257–264. doi:10.1083/jcb.122.1.257 8314845
  • Fox SB , Fawcett J , Jackson DG , et al. Normal human tissues, in addition to some tumors, express multiple different CD44 isoforms. Cancer Res . 1994;54(16):4539–4546.7519124
  • Albelda SM . Role of integrins and other cell adhesion molecules in tumor progression and metastasis. Lab Invest . 1993;68(1):4–17.8423675
  • Wielenga VJ , Heider KH , Offerhaus GJ , et al. Expression of CD44 variant proteins in human colorectal cancer is related to tumor progression. Cancer Res . 1993;53(20):4754–4756.7691404
  • Mulder JW , Sewnath M , Offerhaus G , et al. Colorectal cancer prognosis and expression of exon-v6-containing CD44 proteins. Lancet . 1994;344(8935):1470–1472. doi:10.1016/S0140-6736(94)90290-9 7526103
  • Kaufmann M , von Minckwitz G , Heider K-H , et al. CD44 variant exon epitopes in primary breast cancer and length of survival. Lancet . 1995;345(8950):615–619. doi:10.1016/S0140-6736(95)90521-9 7534855
  • van der Bruggen P , Traversari C , Chomez P , et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science . 1991;254(5038):1643–1647. doi:10.1126/science.1840703 1840703
  • Chomez P , De Backer O , Bertrand M , et al. An overview of the MAGE gene family with the identification of all human members of the family. Cancer Res . 2001;61(14):5544–5551.11454705
  • Chomez P , Williams R , De Backer O , et al. The SMAGE gene family is expressed in post-meiotic spermatids during mouse germ cell differentiation. Immunogenetics . 1996;43(1–2):97–100. doi:10.1007/BF00186613 8537132
  • Van den Eynde BJ , van der Bruggen P . T cell defined tumor antigens. Curr Opin Immunol . 1997;9(5):684–693. doi:10.1016/S0952-7915(97)80050-7 9368778
  • Dutoit V , Rubio-Godoy V , Dietrich PY , et al. Heterogeneous T-cell response to MAGE-A10(254–262): high avidity-specific cytolytic T lymphocytes show superior antitumor activity. Cancer Res . 2001;61(15):5850–5856.11479225
  • Tatsumi T , Kierstead LS , Ranieri E , et al. MAGE-6 encodes HLA-DRbeta1*0401-presented epitopes recognized by CD4+ T cells from patients with melanoma or renal cell carcinoma. Clin Cancer Res . 2003;9(3):947–954.12631591
  • Rimoldi D , Salvi S , Reed D , et al. cDNA and protein characterization of human MAGE-10. Int J Cancer . 1999;82(6):901–907. doi:10.1002/(SICI)1097-0215(19990909)82:6<901::AID-IJC21>3.0.CO;2-X 10446460
  • Marchand M , van Baren N , Weynants P , et al. Tumor regressions observed in patients with metastatic melanoma treated with an antigenic peptide encoded by gene MAGE-3 and presented by HLA-A1. Int J Cancer . 1999;80(2):219–230. doi:10.1002/(SICI)1097-0215(19990118)80:2<219::AID-IJC10>3.0.CO;2-S 9935203
  • Thurner B , Haendle I , Röder C , et al. Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J Exp Med . 1999;190(11):1669–1678. doi:10.1084/jem.190.11.1669 10587357
  • Ohman Forslund K , Nordqvist K . The melanoma antigen genes–any clues to their functions in normal tissues? Exp Cell Res . 2001;265(2):185–194. doi:10.1006/excr.2001.5173 11302683
  • Rousseau P , Le Discorde M , Mouillot G , et al. The 14 bp deletion-insertion polymorphism in the 3ʹ UT region of the HLA-G gene influences HLA-G mRNA stability. Hum Immunol . 2003;64(11):1005–1010. doi:10.1016/j.humimm.2003.08.347 14602228
  • Flower DR . Beyond the superfamily: the lipocalin receptors. Biochim Biophys Acta . 2000;1482(1–2):327–336. doi:10.1016/S0167-4838(00)00169-2 11058773
  • Flower DR . The lipocalin protein family: structure and function. Biochem J . 1996;318(Pt 1):1–14. doi:10.1042/bj3180001 8761444
  • Flower DR , North AC , Sansom CE . The lipocalin protein family: structural and sequence overview. Biochim Biophys Acta . 2000;1482(1–2):9–24. doi:10.1016/S0167-4838(00)00148-5 11058743
  • Kjeldsen L , Johnsen AH , Sengeløv H , et al. Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase. J Biol Chem . 1993;268(14):10425–10432. doi:10.1016/S0021-9258(18)82217-7 7683678
  • Nielsen BS , Borregaard N , Bundgaard JR , et al. Induction of NGAL synthesis in epithelial cells of human colorectal neoplasia and inflammatory bowel diseases. Gut . 1996;38(3):414–420. doi:10.1136/gut.38.3.414 8675096
  • Friedl A , Stoesz SP , Buckley P , et al. Neutrophil gelatinase-associated lipocalin in normal and neoplastic human tissues. Cell type-specific pattern of expression. Histochem J . 1999;31(7):433–441. doi:10.1023/A:1003708808934 10475571
  • Yan L , Borregaard N , Kjeldsen L , et al. The high molecular weight urinary matrix metalloproteinase (MMP) activity is a complex of gelatinase B/MMP-9 and neutrophil gelatinase-associated lipocalin (NGAL). Modulation of MMP-9 activity by NGAL. J Biol Chem . 2001;276(40):37258–37265. doi:10.1074/jbc.M106089200 11486009
  • Tschesche H , Zölzer V , Triebel S , et al. The human neutrophil lipocalin supports the allosteric activation of matrix metalloproteinases. Eur J Biochem . 2001;268(7):1918–1928. doi:10.1046/j.1432-1327.2001.02066.x 11277914
  • Goetz DH , Holmes MA , Borregaard N , et al. The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol Cell . 2002;10(5):1033–1043. doi:10.1016/S1097-2765(02)00708-6 12453412
  • Flo TH , Smith KD , Sato S , et al. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature . 2004;432(7019):917–921. doi:10.1038/nature03104 15531878
  • Mori K , Lee HT , Rapoport D , et al. Endocytic delivery of lipocalin-siderophore-iron complex rescues the kidney from ischemia-reperfusion injury. J Clin Invest . 2005;115(3):610–621. doi:10.1172/JCI23056 15711640
  • Tong Z , Wu X , Ovcharenko D , et al. Neutrophil gelatinase-associated lipocalin as a survival factor. Biochem J . 2005;391(Pt 2):441–448. doi:10.1042/BJ20051020 16060857
  • Yang J , Mori K , Li JY , et al. Iron, lipocalin, and kidney epithelia. Am J Physiol Renal Physiol . 2003;285(1):F9–18. doi:10.1152/ajprenal.00008.2003 12788784
  • Gwira JA , Wei F , Ishibe S , et al. Expression of neutrophil gelatinase-associated lipocalin regulates epithelial morphogenesis in vitro. J Biol Chem . 2005;280(9):7875–7882. doi:10.1074/jbc.M413192200 15637066
  • Li EM , Xu L-Y , Cai W-J , et al. [Functions of neutrophil gelatinase-associated lipocalin in the esophageal carcinoma cell line SHEEC]. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao . 2003;35(3):247–254. Chinese.12621549
  • Xiong X , Ke X , Wang L , et al. Splice variant of growth hormone-releasing hormone receptor drives esophageal squamous cell carcinoma conferring a therapeutic target. Proc Natl Acad Sci U S A . 2020;117(12):6726–6732. doi:10.1073/pnas.1913433117 32156725
  • Rekasi Z , Czompoly T , Schally AV , et al. Isolation and sequencing of cDNAs for splice variants of growth hormone-releasing hormone receptors from human cancers. Proc Natl Acad Sci U S A . 2000;97(19):10561–10566. doi:10.1073/pnas.180313297 10962031
  • Szalontay L , Schally AV , Popovics P , et al. Novel GHRH antagonists suppress the growth of human malignant melanoma by restoring nuclear p27 function. Cell Cycle . 2014;13(17):2790–2797. doi:10.4161/15384101.2015.945879 25486366
  • Klukovits A , Schally AV , Szalontay L , et al. Novel antagonists of growth hormone-releasing hormone inhibit growth and vascularization of human experimental ovarian cancers. Cancer . 2012;118(3):670–680. doi:10.1002/cncr.26291 21751186
  • Rumpel CA , Powell SM , Moskaluk CA . Mapping of genetic deletions on the long arm of chromosome 4 in human esophageal adenocarcinomas. Am J Pathol . 1999;154(5):1329–1334. doi:10.1016/S0002-9440(10)65386-2 10329585
  • Barnas C , Henn T , Stark M , et al. Detection of genetic alterations in cancers of the esophagus and esophagogastric junction by comparative genomic hybridization: frequent involvement of chromosome 4q. Proceedings of the Am Assoc Cancer Res; 1999.
  • Powers CJ , McLeskey SW , Wellstein A . Fibroblast growth factors, their receptors and signaling. Endocr Relat Cancer . 2000;7(3):165–197. doi:10.1677/erc.0.0070165 11021964
  • Murphy PR , Knee RS . Identification and characterization of an antisense RNA transcript (gfg) from the human basic fibroblast growth factor gene. Mol Endocrinol . 1994;8(7):852–859. doi:10.1210/mend.8.7.7984147 7984147
  • Knee R , Li AW , Murphy PR . Characterization and tissue-specific expression of the rat basic fibroblast growth factor antisense mRNA and protein. Proc Natl Acad Sci U S A . 1997;94(10):4943–4947. doi:10.1073/pnas.94.10.4943 9144169
  • Li AW , Murphy PR . Expression of alternatively spliced FGF-2 antisense RNA transcripts in the central nervous system: regulation of FGF-2 mRNA translation. Mol Cell Endocrinol . 2000;170(1–2):233–242. doi:10.1016/S0303-7207(00)00440-8 11162906
  • Asa SL , Ramyar L , Murphy PR , et al. The endogenous fibroblast growth factor-2 antisense gene product regulates pituitary cell growth and hormone production. Mol Endocrinol . 2001;15(4):589–599. doi:10.1210/mend.15.4.0626 11266510
  • Zhang SC , Barclay C , Alexander LA , et al. Alternative splicing of the FGF antisense gene: differential subcellular localization in human tissues and esophageal adenocarcinoma. J Mol Med (Berl) . 2007;85(11):1215–1228. doi:10.1007/s00109-007-0219-9 17569023
  • Kausar T , Sharma R , Hasan MR , et al. Overexpression of a splice variant of oncostatin M receptor beta in human esophageal squamous carcinoma. Cell Oncol . 2011;34(3):177–187. doi:10.1007/s13402-011-0011-2
  • Ye Q , Yan Z , Liao X , et al. MUC1 induces metastasis in esophageal squamous cell carcinoma by upregulating matrix metalloproteinase 13. Lab Invest . 2011;91(5):778–787. doi:10.1038/labinvest.2011.12 21339746
  • Liu J , He L , Collins I , et al. The FBP interacting repressor targets TFIIH to inhibit activated transcription. Mol Cell . 2000;5(2):331–341. doi:10.1016/S1097-2765(00)80428-1 10882074
  • Matsushita K , Tomonaga T , Shimada H , et al. An essential role of alternative splicing of c-myc suppressor FUSE-binding protein–interacting repressor in carcinogenesis. Cancer Res . 2006;66(3):1409–1417. doi:10.1158/0008-5472.CAN-04-4459 16452196
  • Matsushita K , Kajiwara T , Tamura M , et al. SAP155-mediated splicing of FUSE-binding protein-interacting repressor serves as a molecular switch for c-myc gene expression. Mol Cancer Res . 2012;10(6):787–799. doi:10.1158/1541-7786.MCR-11-0462 22496461
  • Rahmutulla B , Matsushita K , Nomura F . Alternative splicing of DNA damage response genes and gastrointestinal cancers. World J Gastroenterol . 2014;20(46):17305–17313. doi:10.3748/wjg.v20.i46.17305 25516641
  • Matsushita T , Ohyabu N , Fujitani N , et al. Site-specific conformational alteration induced by sialylation of MUC1 tandem repeating glycopeptides at an epitope region for the anti-KL-6 monoclonal antibody. Biochemistry . 2013;52(2):402–414. doi:10.1021/bi3013142 23259747
  • Song JH , Schnittke N , Zaat A , et al. FBXW7 mutation in adult T-cell and B-cell acute lymphocytic leukemias. Leuk Res . 2008;32(11):1751–1755. doi:10.1016/j.leukres.2008.03.040 18485478
  • Zhang W , Koepp DM . Fbw7 isoform interaction contributes to cyclin E proteolysis. Mol Cancer Res . 2006;4(12):935–943. doi:10.1158/1541-7786.MCR-06-0253 17189384
  • Cheng Y , Li G . Role of the ubiquitin ligase Fbw7 in cancer progression. Cancer Metastasis Rev . 2012;31(1–2):75–87. doi:10.1007/s10555-011-9330-z 22124735
  • Zhang G , Zhou X , Xue L , et al. Accumulation of cytoplasmic beta-catenin correlates with reduced expression of E-cadherin, but not with phosphorylated Akt in esophageal squamous cell carcinoma: immunohistochemical study. Pathol Int . 2005;55(6):310–317. doi:10.1111/j.1440-1827.2005.01840.x 15943787
  • Lv J , Cao X-F , Ji L , et al. Association of β-catenin, Wnt1, Smad4, Hoxa9, and Bmi-1 with the prognosis of esophageal squamous cell carcinoma. Med Oncol . 2012;29(1):151–160. doi:10.1007/s12032-010-9816-5 21259057
  • Yan S , Zhou C , Zhang W , et al. beta-Catenin/TCF pathway upregulates STAT3 expression in human esophageal squamous cell carcinoma. Cancer Lett . 2008;271(1):85–97. doi:10.1016/j.canlet.2008.05.035 18602747
  • Wang Y , Zhou X , Zhu H , et al. Overexpression of EB1 in human esophageal squamous cell carcinoma (ESCC) may promote cellular growth by activating beta-catenin/TCF pathway. Oncogene . 2005;24(44):6637–6645. doi:10.1038/sj.onc.1208819 16007168
  • Ring A , Kim YM , Kahn M . Wnt/catenin signaling in adult stem cell physiology and disease. Stem Cell Rev Rep . 2014;10(4):512–525. doi:10.1007/s12015-014-9515-2 24825509
  • Shiina H , Igawa M , Breault J , et al. The human T-cell factor-4 gene splicing isoforms, Wnt signal pathway, and apoptosis in renal cell carcinoma. Clin Cancer Res . 2003;9(6):2121–2132.12796377
  • Tsedensodnom O , Koga H , Rosenberg SA , et al. Identification of T-cell factor-4 isoforms that contribute to the malignant phenotype of hepatocellular carcinoma cells. Exp Cell Res . 2011;317(7):920–931. doi:10.1016/j.yexcr.2011.01.015 21256126
  • Duval A , Rolland S , Tubacher E , et al. The human T-cell transcription factor-4 gene: structure, extensive characterization of alternative splicings, and mutational analysis in colorectal cancer cell lines. Cancer Res . 2000;60(14):3872–3879.10919662
  • Le Bacquer O , Shu L , Marchand M , et al. TCF7L2 splice variants have distinct effects on beta-cell turnover and function. Hum Mol Genet . 2011;20(10):1906–1915. doi:10.1093/hmg/ddr072 21357677
  • Hansson O , Zhou Y , Renström E , et al. Molecular function of TCF7L2: consequences of TCF7L2 splicing for molecular function and risk for type 2 diabetes. Curr Diab Rep . 2010;10(6):444–451. doi:10.1007/s11892-010-0149-8 20878273
  • Prokunina-Olsson L , Kaplan LM , Schadt EE , et al. Alternative splicing of TCF7L2 gene in omental and subcutaneous adipose tissue and risk of type 2 diabetes. PLoS One . 2009;4(9):e7231. doi:10.1371/journal.pone.0007231 19789636
  • Weise A , Bruser K , Elfert S , et al. Alternative splicing of Tcf7l2 transcripts generates protein variants with differential promoter-binding and transcriptional activation properties at Wnt/beta-catenin targets. Nucleic Acids Res . 2010;38(6):1964–1981. doi:10.1093/nar/gkp1197 20044351
  • Young RM , Reyes AE , Allende ML . Expression and splice variant analysis of the zebrafish tcf4 transcription factor. Mech Dev . 2002;117(1–2):269–273. doi:10.1016/S0925-4773(02)00180-6 12204269
  • Kennell JA , O’Leary EE , Gummow BM , et al. T-cell factor 4N (TCF-4N), a novel isoform of mouse TCF-4, synergizes with beta-catenin to coactivate C/EBPalpha and steroidogenic factor 1 transcription factors. Mol Cell Biol . 2003;23(15):5366–5375. doi:10.1128/MCB.23.15.5366-5375.2003 12861022
  • Howng SL , Huang F-H , Hwang S-L , et al. Differential expression and splicing isoform analysis of human Tcf-4 transcription factor in brain tumors. Int J Oncol . 2004;25(6):1685–1692.15547706
  • Cuilliere-Dartigues P , El-Bchiri J , Krimi A , et al. TCF-4 isoforms absent in TCF-4 mutated MSI-H colorectal cancer cells colocalize with nuclear CtBP and repress TCF-4-mediated transcription. Oncogene . 2006;25(32):4441–4448. doi:10.1038/sj.onc.1209471 16547505
  • Bani-Hani K , Martin IG , Hardie LJ , et al. Prospective study of cyclin D1 overexpression in Barrett’s esophagus: association with increased risk of adenocarcinoma. J Natl Cancer Inst . 2000;92(16):1316–1321. doi:10.1093/jnci/92.16.1316 10944553
  • Diehl JA . Cycling to cancer with cyclin D1. Cancer Biol Ther . 2002;1(3):226–231. doi:10.4161/cbt.72 12432268
  • Betticher DC , Thatcher N , Altermatt HJ , et al. Alternate splicing produces a novel cyclin D1 transcript. Oncogene . 1995;11(5):1005–1011.7675441
  • Hibberts NA , Simpson DJ , Bicknell JE , et al. Analysis of cyclin D1 (CCND1) allelic imbalance and overexpression in sporadic human pituitary tumors. Clin Cancer Res . 1999;5(8):2133–2139.10473097
  • Kong S , Amos CI , Luthra R , et al. Effects of cyclin D1 polymorphism on age of onset of hereditary nonpolyposis colorectal cancer. Cancer Res . 2000;60(2):249–252.10667569
  • Zheng Y , Shen H , Sturgis EM , et al. Cyclin D1 polymorphism and risk for squamous cell carcinoma of the head and neck: a case-control study. Carcinogenesis . 2001;22(8):1195–1199. doi:10.1093/carcin/22.8.1195 11470749
  • Simpson DJ , Frost SJ , Bicknell JE , et al. Aberrant expression of G(1)/S regulators is a frequent event in sporadic pituitary adenomas. Carcinogenesis . 2001;22(8):1149–1154. doi:10.1093/carcin/22.8.1149 11470742
  • Alt JR , Cleveland JL , Hannink M , et al. Phosphorylation-dependent regulation of cyclin D1 nuclear export and cyclin D1-dependent cellular transformation. Genes Dev . 2000;14(24):3102–3114. doi:10.1101/gad.854900 11124803
  • Barclay JY , Morris A , Nwokolo CU . Telomerase, hTERT and splice variants in Barrett’s oesophagus and oesophageal adenocarcinoma. Eur J Gastroenterol Hepatol . 2005;17(2):221–227. doi:10.1097/00042737-200502000-00014 15674101
  • Bodnar AG , Ouellette M , Frolkis M , et al. Extension of life-span by introduction of telomerase into normal human cells. Science . 1998;279(5349):349–352. doi:10.1126/science.279.5349.349 9454332
  • Nakayama J , Tahara H , Tahara E , et al. Telomerase activation by hTRT in human normal fibroblasts and hepatocellular carcinomas. Nat Genet . 1998;18(1):65–68. doi:10.1038/ng0198-65 9425903
  • Meyerson M , Counter CM , Eaton EN , et al. hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell . 1997;90(4):785–795. doi:10.1016/S0092-8674(00)80538-3 9288757
  • Wang J , Xie LY , Allan S , et al. Myc activates telomerase. Genes Dev . 1998;12(12):1769–1774. doi:10.1101/gad.12.12.1769 9637678
  • Kyo S , Kanaya T , Takakura M , et al. Expression of human telomerase subunits in ovarian malignant, borderline and benign tumors. Int J Cancer . 1999;80(6):804–809. doi:10.1002/(SICI)1097-0215(19990315)80:6<804::AID-IJC2>3.0.CO;2-B 10074910
  • Wang Z , Kyo S , Takakura M , et al. Progesterone regulates human telomerase reverse transcriptase gene expression via activation of mitogen-activated protein kinase signaling pathway. Cancer Res . 2000;60(19):5376–5381.11034074
  • Shay JW , Bacchetti S . A survey of telomerase activity in human cancer. Eur J Cancer . 1997;33(5):787–791. doi:10.1016/S0959-8049(97)00062-2 9282118
  • Oh S , Song Y , Yim J , et al. The Wilms’ tumor 1 tumor suppressor gene represses transcription of the human telomerase reverse transcriptase gene. J Biol Chem . 1999;274(52):37473–37478. doi:10.1074/jbc.274.52.37473 10601322
  • Oh S , Song Y-H , Yim J , et al. Identification of Mad as a repressor of the human telomerase (hTERT) gene. Oncogene . 2000;19(11):1485–1490. doi:10.1038/sj.onc.1203439 10723141
  • Kanaya T , Kyo S , Hamada K , et al. Adenoviral expression of p53 represses telomerase activity through down-regulation of human telomerase reverse transcriptase transcription. Clin Cancer Res . 2000;6(4):1239–1247.10778946
  • Dome JS , Chung S , Bergemann T , et al. High telomerase reverse transcriptase (hTERT) messenger RNA level correlates with tumor recurrence in patients with favorable histology Wilms’ tumor. Cancer Res . 1999;59(17):4301–4307.10485476
  • Takakura M , Kyo S , Kanaya T , et al. Expression of human telomerase subunits and correlation with telomerase activity in cervical cancer. Cancer Res . 1998;58(7):1558–1561.9537264
  • Wu A , Ichihashi M , Ueda M . Correlation of the expression of human telomerase subunits with telomerase activity in normal skin and skin tumors. Cancer . 1999;86(10):2038–2044. doi:10.1002/(SICI)1097-0142(19991115)86:10<2038::AID-CNCR22>3.0.CO;2-A 10570429
  • Harada K , Kurisu K , Arita K , et al. Telomerase activity in central nervous system malignant lymphoma. Cancer . 1999;86(6):1050–1055.10491533
  • Toshikuni N , Nouso K , Higashi T , et al. Expression of telomerase-associated protein 1 and telomerase reverse transcriptase in hepatocellular carcinoma. Br J Cancer . 2000;82(4):833–837. doi:10.1054/bjoc.1999.1008 10732755
  • Kyo S , Takakura M , Kanaya T , et al. Estrogen activates telomerase. Cancer Res . 1999;59(23):5917–5921.10606235
  • Park TW , Riethdorf S , Riethdorf L , et al. Differential telomerase activity, expression of the telomerase catalytic sub-unit and telomerase-RNA in ovarian tumors. Int J Cancer . 1999;84(4):426–431. doi:10.1002/(SICI)1097-0215(19990820)84:4<426::AID-IJC17>3.0.CO;2-1 10404098
  • Bachor C , Bachor OA , Boukamp P . Telomerase is active in normal gastrointestinal mucosa and not up-regulated in precancerous lesions. J Cancer Res Clin Oncol . 1999;125(8–9):453–460. doi:10.1007/s004320050302 10480337
  • Lord RV , Salonga D , Danenberg KD , et al. Telomerase reverse transcriptase expression is increased early in the Barrett’s metaplasia, dysplasia, adenocarcinoma sequence. J Gastrointest Surg . 2000;4(2):135–142. doi:10.1016/S1091-255X(00)80049-9 10675236
  • Usselmann B , Portsmouth D , Barclay J , et al. Inhibition of telomerase by site-specific ribonucleases in gastric and esophageal adenocarcinoma. Dig Dis Sci . 2001;46(12):2666–2672. doi:10.1023/A:1012767127278 11768258
  • Colgin LM , Wilkinso C , Englezou A , et al. The hTERTalpha splice variant is a dominant negative inhibitor of telomerase activity. Neoplasia . 2000;2(5):426–432. doi:10.1038/sj.neo.7900112 11191109
  • Yi X , White DM , Aisner DL , et al. An alternate splicing variant of the human telomerase catalytic subunit inhibits telomerase activity. Neoplasia . 2000;2(5):433–440. doi:10.1038/sj.neo.7900113 11191110
  • Li H , Zhao L , Yang Z , et al. Telomerase is controlled by protein kinase Calpha in human breast cancer cells. J Biol Chem . 1998;273(50):33436–33442. doi:10.1074/jbc.273.50.33436 9837921
  • Kharbanda S , Kumar V , Dhar S , et al. Regulation of the hTERT telomerase catalytic subunit by the c-Abl tyrosine kinase. Curr Biol . 2000;10(10):568–575. doi:10.1016/S0960-9822(00)00483-8 10837221
  • Roth MJ , Hu N , Johnson LL , et al. beta-Catenin splice variants and downstream targets as markers for neoplastic progression of esophageal cancer. Genes Chromosomes Cancer . 2005;44(4):423–428. doi:10.1002/gcc.20251 16114033
  • He TC , Sparks AB , Rago C , et al. Identification of c-MYC as a target of the APC pathway. Science . 1998;281(5382):1509–1512. doi:10.1126/science.281.5382.1509 9727977
  • Bièche I , Laurendeau I , Tozlu S , et al. Quantitation of MYC gene expression in sporadic breast tumors with a real-time reverse transcription-PCR assay. Cancer Res . 1999;59(12):2759–2765.10383126
  • Behrens J . Control of beta-catenin signaling in tumor development. Ann N Y Acad Sci . 2000;910:21–33. doi:10.1111/j.1749-6632.2000.tb06698.x 10911903
  • Bitzer M , Stahl M , Arjumand J , et al. C-myc gene amplification in different stages of oesophageal squamous cell carcinoma: prognostic value in relation to treatment modality. Anticancer Res . 2003;23(2b):1489–1493.12820414
  • Lv GQ , Zou H-Y , Liao L-D , et al. Identification of a novel lysyl oxidase-like 2 alternative splicing isoform, LOXL2 Δe13, in esophageal squamous cell carcinoma. Biochem Cell Biol . 2014;92(5):379–389. doi:10.1139/bcb-2014-0046 25275797
  • Barry-Hamilton V , Spangler R , Marshall D , et al. Allosteric inhibition of lysyl oxidase-like-2 impedes the development of a pathologic microenvironment. Nat Med . 2010;16(9):1009–1017. doi:10.1038/nm.2208 20818376
  • Barker HE , Chang J , Cox TR , et al. LOXL2-mediated matrix remodeling in metastasis and mammary gland involution. Cancer Res . 2011;71(5):1561–1572. doi:10.1158/0008-5472.CAN-10-2868 21233336
  • Quail DF , Joyce JA . Microenvironmental regulation of tumor progression and metastasis. Nat Med . 2013;19(11):1423–1437. doi:10.1038/nm.3394 24202395
  • Barker HE , Cox TR , Erler JT . The rationale for targeting the LOX family in cancer. Nat Rev Cancer . 2012;12(8):540–552. doi:10.1038/nrc3319 22810810
  • Li TY , Xu L-Y , Wu ZY , et al. Reduced nuclear and ectopic cytoplasmic expression of lysyl oxidase-like 2 is associated with lymph node metastasis and poor prognosis in esophageal squamous cell carcinoma. Hum Pathol . 2012;43(7):1068–1076. doi:10.1016/j.humpath.2011.07.027 22204712
  • Wu BL , Zou HY , Lv GQ , et al. Protein-protein interaction network analyses for elucidating the roles of LOXL2-delta72 in esophageal squamous cell carcinoma. Asian Pac J Cancer Prev . 2014;15(5):2345–2351. doi:10.7314/APJCP.2014.15.5.2345 24716982
  • Wu H , Zheng J , Deng J , et al. LincRNA-uc002yug.2 involves in alternative splicing of RUNX1 and serves as a predictor for esophageal cancer and prognosis. Oncogene . 2015;34(36):4723–4734. doi:10.1038/onc.2014.400 25486427
  • Huarte M , Rinn JL . Large non-coding RNAs: missing links in cancer? Hum Mol Genet . 2010;19(R2):R152–61. doi:10.1093/hmg/ddq353 20729297
  • Gibb EA , Brown CJ , Lam WL . The functional role of long non-coding RNA in human carcinomas. Mol Cancer . 2011;10:38. doi:10.1186/1476-4598-10-38 21489289
  • Prensner JR , Chinnaiyan AM . The emergence of lncRNAs in cancer biology. Cancer Discov . 2011;1(5):391–407. doi:10.1158/2159-8290.CD-11-0209 22096659
  • Ji P , Diederichs S , Wang W , et al. MALAT-1, a novel noncoding RNA, and thymosin β 4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene . 2003;22(39):8031–8041. doi:10.1038/sj.onc.1206928 12970751
  • Tsai MC , Manor O , Wan Y , et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science . 2010;329(5992):689–693. doi:10.1126/science.1192002 20616235
  • Yap KL , Li S , Muñoz-Cabello AM , et al. Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell . 2010;38(5):662–674. doi:10.1016/j.molcel.2010.03.021 20541999
  • Okuda T , Nishimura M , Nakao M , et al. RUNX1/AML1: a central player in hematopoiesis. Int J Hematol . 2001;74(3):252–257. doi:10.1007/BF02982057 11721959
  • Wang H , Iakova P , Wilde M , et al. C/EBPalpha arrests cell proliferation through direct inhibition of Cdk2 and Cdk4. Mol Cell . 2001;8(4):817–828. doi:10.1016/S1097-2765(01)00366-5 11684017
  • Chimge N-O , Frenkel B . The RUNX family in breast cancer: relationships with estrogen signaling. Oncogene . 2013;32(17):2121–2130. doi:10.1038/onc.2012.328 23045283
  • Scheitz CJ , Lee TS , McDermitt DJ , et al. Defining a tissue stem cell-driven Runx1/Stat3 signalling axis in epithelial cancer. EMBO j . 2012;31(21):4124–4139. doi:10.1038/emboj.2012.270 23034403
  • Han H , Irimia M , Ross PJ , et al. MBNL proteins repress ES-cell-specific alternative splicing and reprogramming. Nature . 2013;498(7453):241–245. doi:10.1038/nature12270 23739326
  • Dulak AM , Schumacher SE , van Lieshout J , et al. Gastrointestinal adenocarcinomas of the esophagus, stomach, and colon exhibit distinct patterns of genome instability and oncogenesis. Cancer Res . 2012;72(17):4383–4393. doi:10.1158/0008-5472.CAN-11-3893 22751462
  • Ito Y . Oncogenic potential of the RUNX gene family: ‘overview’. Oncogene . 2004;23(24):4198–4208. doi:10.1038/sj.onc.1207755 15156173
  • Tsuzuki S , Hong D , Gupta R , et al. Isoform-specific potentiation of stem and progenitor cell engraftment by AML1/RUNX1. PLoS Med . 2007;4(5):e172. doi:10.1371/journal.pmed.0040172 17503961
  • Nakajima H , Hori Y , Terano H , et al. New antitumor substances, FR901463, FR901464 and FR901465. II. Activities against experimental tumors in mice and mechanism of action. J Antibiot . 1996;49(12):1204–1211. doi:10.7164/antibiotics.49.1204
  • Karni R , Hippo Y , Lowe SW , et al. The splicing-factor oncoprotein SF2/ASF activates mTORC1. Proc Natl Acad Sci U S A . 2008;105(40):15323–15327. doi:10.1073/pnas.0801376105 18832178
  • Zhang J , Lieu YK , Ali AM , et al. Disease-associated mutation in SRSF2 misregulates splicing by altering RNA-binding affinities. Proc Natl Acad Sci U S A . 2015;112(34):E4726–34. doi:10.1073/pnas.1514105112 26261309
  • Wang Z , Burge CB . Splicing regulation: from a parts list of regulatory elements to an integrated splicing code. Rna . 2008;14(5):802–813. doi:10.1261/rna.876308 18369186
  • Castanotto D , Stein CA . Antisense oligonucleotides in cancer. Curr Opin Oncol . 2014;26(6):584–589. doi:10.1097/CCO.0000000000000127 25188471
  • Sun JR , Kong CF , Lou YN , et al. Genome-wide profiling of alternative splicing signature reveals prognostic predictor for esophageal carcinoma. Front Genet . 2020;11:796. doi:10.3389/fgene.2020.00796 32793288
  • Xie ZC , Wu H-Y , Ma F-C , et al. Prognostic alternative splicing signatures and underlying regulatory network in esophageal carcinoma. Am J Transl Res . 2019;11(7):4010–4028.31396315