138
Views
10
CrossRef citations to date
0
Altmetric
Original Research

High SQLE Expression and Gene Amplification Correlates with Poor Prognosis in Head and Neck Squamous Cell Carcinoma

, & ORCID Icon
Pages 4709-4723 | Published online: 14 Jun 2021

References

  • Bray F , Ferlay J , Soerjomataram I , Siegel RL , Torre LA , Jemal A . Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin . 2018;68(6):394–424. doi:10.3322/caac.21492 30207593
  • Melo Filho MR , Rocha BA , Pires MB , et al. Quality of life of patients with head and neck cancer. Braz J Otorhinolaryngol . 2013;79(1):82–88. doi:10.5935/1808-8694.20130014 23503912
  • Aupérin A . Epidemiology of head and neck cancers: an update. Curr Opin Oncol . 2020;32(3):178–186. doi:10.1097/cco.0000000000000629 32209823
  • Madhukar G , Subbarao N . Current and Future Therapeutic Targets: a Review on Treating Head and Neck Squamous Cell Carcinoma. Curr Cancer Drug Targets . 2020;20. doi:10.2174/1568009620666201229120332
  • Cirmena G , Franceschelli P , Isnaldi E , et al. Squalene epoxidase as a promising metabolic target in cancer treatment. Cancer Lett . 2018;425:13–20. doi:10.1016/j.canlet.2018.03.034 29596888
  • Xu H , Zhou S , Tang Q , Xia H , Bi F . Cholesterol metabolism: new functions and therapeutic approaches in cancer. Biochim Biophys Acta Rev Cancer . 2020;1874(1):188394. doi:10.1016/j.bbcan.2020.188394 32698040
  • Dickinson A , Saraswat M , Joenväärä S , et al. Mass spectrometry-based lipidomics of oral squamous cell carcinoma tissue reveals aberrant cholesterol and glycerophospholipid metabolism - A Pilot study. Transl Oncol . 2020;13(10):100807. doi:10.1016/j.tranon.2020.100807 32559714
  • Drabkin HA , Gemmill RM . Cholesterol and the development of clear-cell renal carcinoma. Curr Opin Pharmacol . 2012;12(6):742–750. doi:10.1016/j.coph.2012.08.002 22939900
  • Jiang S , Wang X , Song D , et al. Cholesterol Induces Epithelial-to-Mesenchymal Transition of Prostate Cancer Cells by Suppressing Degradation of EGFR through APMAP. Cancer Res . 2019;79(12):3063–3075. doi:10.1158/0008-5472.Can-18-3295 30987997
  • Ehmsen S , Pedersen MH , Wang G , et al. Increased Cholesterol Biosynthesis Is a Key Characteristic of Breast Cancer Stem Cells Influencing Patient Outcome. Cell Rep . 2019;27(13):3927–3938. doi:10.1016/j.celrep.2019.05.104 31242424
  • Yoshioka H , Coates HW , Chua NK , Hashimoto Y , Brown AJ , Ohgane K . A key mammalian cholesterol synthesis enzyme, squalene monooxygenase, is allosterically stabilized by its substrate. Proc Natl Acad Sci U S A . 2020;117(13):7150–7158. doi:10.1073/pnas.1915923117 32170014
  • Zhang C , Zhang H , Zhang M , et al. OSBPL2 deficiency upregulate SQLE expression increasing intracellular cholesterol and cholesteryl ester by AMPK/SP1 and SREBF2 signalling pathway. Exp Cell Res . 2019;383(2):111512. doi:10.1016/j.yexcr.2019.111512 31356817
  • Haider S , McIntyre A , van Stiphout RG , et al. Genomic alterations underlie a pan-cancer metabolic shift associated with tumour hypoxia. Genome Biol . 2016;17(1):140. doi:10.1186/s13059-016-0999-8 27358048
  • Ge H , Zhao Y , Shi X , et al. Squalene epoxidase promotes the proliferation and metastasis of lung squamous cell carcinoma cells though extracellular signal-regulated kinase signaling. Thorac Cancer . 2019;10(3):428–436. doi:10.1111/1759-7714.12944 30734525
  • Liu D , Wong CC , Fu L , et al. Squalene epoxidase drives NAFLD-induced hepatocellular carcinoma and is a pharmaceutical target. Sci Transl Med . 2018;10:437. doi:10.1126/scitranslmed.aap9840
  • Qin Y , Zhang Y , Tang Q , Jin L , Chen Y . SQLE induces epithelial-to-mesenchymal transition by regulating of miR-133b in esophageal squamous cell carcinoma. Acta Biochim Biophys Sin (Shanghai) . 2017;49(2):138–148. doi:10.1093/abbs/gmw127 28069586
  • Stopsack KH , Gerke TA , Andrén O , et al. Cholesterol uptake and regulation in high-grade and lethal prostate cancers. Carcinogenesis . 2017;38(8):806–811. doi:10.1093/carcin/bgx058 28595267
  • Helms MW , Kemming D , Pospisil H , et al. Squalene epoxidase, located on chromosome 8q24.1, is upregulated in 8q+ breast cancer and indicates poor clinical outcome in stage I and II disease. Br J Cancer . 2008;99(5):774–780. doi:10.1038/sj.bjc.6604556 18728668
  • Mahoney CE , Pirman D , Chubukov V , et al. A chemical biology screen identifies a vulnerability of neuroendocrine cancer cells to SQLE inhibition. Nat Commun . 2019;10(1):96. doi:10.1038/s41467-018-07959-4 30626880
  • Padyana AK , Gross S , Jin L , et al. Structure and inhibition mechanism of the catalytic domain of human squalene epoxidase. Nat Commun . 2019;10(1):97. doi:10.1038/s41467-018-07928-x 30626872
  • Brown AJ , Chua NK , Yan N . The shape of human squalene epoxidase expands the arsenal against cancer. Nat Commun . 2019;10(1):888. doi:10.1038/s41467-019-08866-y 30792392
  • Li Y , Ge D , Lu C . The SMART App: an interactive web application for comprehensive DNA methylation analysis and visualization. Epigenetics Chromatin . 2019;12(1):71. doi:10.1186/s13072-019-0316-3 31805986
  • Sun D , Wang J , Han Y , et al. TISCH: a comprehensive web resource enabling interactive single-cell transcriptome visualization of tumor microenvironment. Nucleic Acids Res . 2021;49(D1):D1420–d1430. doi:10.1093/nar/gkaa1020 33179754
  • Luck K , Kim DK , Lambourne L , et al. A reference map of the human binary protein interactome. Nature . 2020;580(7803):402–408. doi:10.1038/s41586-020-2188-x 32296183
  • Zhou Y , Zhou B , Pache L , et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun . 2019;10(1):1523. doi:10.1038/s41467-019-09234-6 30944313
  • Vasaikar SV , Straub P , Wang J , Zhang B . LinkedOmics: analyzing multi-omics data within and across 32 cancer types. Nucleic Acids Res . 2018;46(D1):D956. doi:10.1093/nar/gkx1090 29136207
  • Li T , Fu J , Zeng Z , et al. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res . 2020;48(W1):W509. doi:10.1093/nar/gkaa407 32442275
  • Jun SY , Brown AJ , Chua NK , et al. Reduction of Squalene Epoxidase by Cholesterol Accumulation Accelerates Colorectal Cancer Progression and Metastasis. Gastroenterology . 2020;160(4):1194–1207.e28. doi:10.1053/j.gastro.2020.09.009 32946903
  • Garcia-Bermudez J , Baudrier L , Bayraktar EC , et al. Squalene accumulation in cholesterol auxotrophic lymphomas prevents oxidative cell death. Nature . 2019;567(7746):118–122. doi:10.1038/s41586-019-0945-5 30760928
  • Kalyankrishna S , Grandis JR . Epidermal growth factor receptor biology in head and neck cancer. J Clin Oncol . 2006;24(17):2666–2672. doi:10.1200/jco.2005.04.8306 16763281
  • Cruz JJ , Ocaña A , Del Barco E , Pandiella A . Targeting receptor tyrosine kinases and their signal transduction routes in head and neck cancer. Ann Oncol . 2007;18(3):421–430. doi:10.1093/annonc/mdl175 16873430
  • Johnson DE . Targeting proliferation and survival pathways in head and neck cancer for therapeutic benefit. Chin J Cancer . 2012;31(7):319–326. doi:10.5732/cjc.011.10404 22257382
  • Byeon HK , Ku M , Yang J . Beyond EGFR inhibition: multilateral combat strategies to stop the progression of head and neck cancer. Exp Mol Med . 2019;51(1):1–14. doi:10.1038/s12276-018-0202-2
  • Murai T . Cholesterol lowering: role in cancer prevention and treatment. Biol Chem . 2015;396(1):1–11. doi:10.1515/hsz-2014-0194 25205720
  • Silvente-Poirot S , Poirot M . Cholesterol metabolism and cancer: the good, the bad and the ugly. Curr Opin Pharmacol . 2012;12(6):673–676. doi:10.1016/j.coph.2012.10.004 23103112
  • Chien MH , Lee TS , Kao C , Yang SF , Lee WS . Terbinafine inhibits oral squamous cell carcinoma growth through anti-cancer cell proliferation and anti-angiogenesis. Mol Carcinog . 2012;51(5):389–399. doi:10.1002/mc.20800 21563217
  • Li B , Lu L , Zhong M , et al. Terbinafine inhibits KSR1 and suppresses Raf-MEK-ERK signaling in oral squamous cell carcinoma cells. Neoplasma . 2013;60(4):406–412. doi:10.4149/neo_2013_052 23581412
  • Guo C , Chen S , Liu W , et al. Immunometabolism: a new target for improving cancer immunotherapy. Adv Cancer Res . 2019;143:195–253. doi:10.1016/bs.acr.2019.03.004 31202359
  • Mazumdar C , Driggers EM , Turka LA . The Untapped Opportunity and Challenge of Immunometabolism: a New Paradigm for Drug Discovery. Cell Metab . 2020;31(1):26–34. doi:10.1016/j.cmet.2019.11.014 31839485
  • Ho PC , Liu PS . Metabolic communication in tumors: a new layer of immunoregulation for immune evasion. J Immunother Cancer . 2016;4:4. doi:10.1186/s40425-016-0109-1 26885366
  • Kaymak I , Williams KS , Cantor JR , Jones RG . Immunometabolic Interplay in the Tumor Microenvironment. Cancer Cell . 2021;39(1):28–37. doi:10.1016/j.ccell.2020.09.004 33125860
  • Li X , Wenes M , Romero P , Huang SC , Fendt SM , Ho PC . Navigating metabolic pathways to enhance antitumour immunity and immunotherapy. Nat Rev Clin Oncol . 2019;16(7):425–441. doi:10.1038/s41571-019-0203-7 30914826
  • Raccosta L , Fontana R , Corna G , Maggioni D , Moresco M , Russo V . Cholesterol metabolites and tumor microenvironment: the road towards clinical translation. Cancer Immunol Immunother . 2016;65(1):111–117. doi:10.1007/s00262-015-1779-0 26646851
  • Zhang L , Romero P . Metabolic Control of CD8(+) T Cell Fate Decisions and Antitumor Immunity. Trends Mol Med . 2018;24(1):30–48. doi:10.1016/j.molmed.2017.11.005 29246759
  • Ma X , Bi E , Huang C , et al. Cholesterol negatively regulates IL-9-producing CD8(+) T cell differentiation and antitumor activity. J Exp Med . 2018;215(6):1555–1569. doi:10.1084/jem.20171576 29743292
  • Ma X , Bi E , Lu Y , et al. Cholesterol Induces CD8(+) T Cell Exhaustion in the Tumor Microenvironment. Cell Metab . 2019;30(1):143–156. doi:10.1016/j.cmet.2019.04.002 31031094