134
Views
13
CrossRef citations to date
0
Altmetric
Original Research

Association of Tumour Microenvironment with Protein Glycooxidation, DNA Damage, and Nitrosative Stress in Colorectal Cancer

ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, , , , ORCID Icon, , & show all
Pages 6329-6348 | Published online: 12 Aug 2021

References

  • World Health Organization: Cancer. 2020. Available from: https://www.who.int/news-room/fact-sheets/detail/cancer. Accessed September 07, 2020.
  • BrayF, FerlayJ, SoerjomataramI, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. doi:10.3322/caac.2149230207593
  • Ferlay J, Ervik M, Lam F, et al. Global Cancer Observatory: Cancer Tomorrow. Lyon: International Agency for Research on Cancer; 2018. Available from: https://gco.iarc.fr/tomorrow. Accessed September 07, 2020.
  • ManturM, SnarskaJ, KoperO, et al. Serum sICAM, sVCAM and sE-selectin levels in colorectal cancer patients. Folia Histochem Cytobiol. 2009;47(4):621–625.20430730
  • KornilukA, KamińskaJ, KiszłoP, et al. Lectin adhesion proteins (P-, L- and E-selectins) as biomarkers in colorectal cancer. Biomarkers. 2017;22(7):629–634.27775438
  • BufillJA. Colorectal cancer: evidence for distinct genetic categories based on proximal or distal tumor location. Ann Intern Med. 1990;113(10):779–788. doi:10.7326/0003-4819-113-10-7792240880
  • BaranB, Mert OzupekN, Yerli TetikN, et al. Difference between left-sided and right-sided colorectal cancer: a focused review of literature. Gastroenterol Res. 2018;11(4):264–273. doi:10.14740/gr1062w
  • MenaS, OrtegaA, EstrelaJM. Oxidative stress in environmental-induced carcinogenesis. Mutat Res. 2009;674(1–2):36–44. doi:10.1016/j.mrgentox.2008.09.01718977455
  • KurutasEB. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutr J. 2016;15(1):71. doi:10.1186/s12937-016-0186-527456681
  • KlaunigJE, WangZ, PuX, et al. Oxidative stress and oxidative damage in chemical carcinogenesis. Toxicol Appl Pharmacol. 2011;254(2):86–99.21296097
  • KornilukA, KoperO, KemonaH, et al. From inflammation to cancer. Ir J Med Sci. 2017;186(1):57–62. doi:10.1007/s11845-016-1464-027156054
  • ZińczukJ, MaciejczykM, ZarębaK, et al. Pro-oxidant enzymes, redox balance and oxidative damage to proteins, lipids and DNA in colorectal cancer tissue. is oxidative stress dependent on tumour budding and inflammatory infiltration?Cancers. 2020;12(6):1636. doi:10.3390/cancers12061636
  • JassJR, SobinLH. Histological Typing of Intestinal Tumours. Heidelberg: Springer Berlin Heidelberg; 1989.
  • LugliA, KirschR, AjiokaY, et al. Recommendations for reporting tumor budding in colorectal cancer based on the International Tumor Budding Consensus Conference (ITBCC) 2016. Mod Pathol. 2017;30(9):1299–1311. doi:10.1038/modpathol.2017.4628548122
  • UenoH, KajiwaraY, ShimazakiH, et al. New criteria for histologic grading of colorectal cancer. Am J Surg Pathol. 2012;36(2):193–201. doi:10.1097/PAS.0b013e318235edee22251938
  • ZalewskaA, KnaśM, Zendzian-PiotrowskaM, et al. Antioxidant profile of salivary glands in high fat diet-induced insulin resistance rats. Oral Dis. 2014;20(6):560–566. doi:10.1111/odi.1217324106991
  • KolodziejU, MaciejczykM, MiaskoA, et al. Oxidative modification in the salivary glands of high fat-diet induced insulin resistant rats. Front Physiol. 2017;8:20. doi:10.3389/fphys.2017.0002028184199
  • BenzieIFF, StrainJJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem. 1996;239(1):70–76. doi:10.1006/abio.1996.02928660627
  • ReznickAZ, PackerL. Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol. 1994;233:357–363.8015470
  • EllmanGL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959;82(1):70–77. doi:10.1016/0003-9861(59)90090-613650640
  • KlimiukA, MaciejczykM, ChoromańskaM, et al. Salivary Redox Biomarkers in Different Stages of Dementia Severity. J Clin Med. 2019;8(6):840. doi:10.3390/jcm8060840
  • BorysJ, MaciejczykM, KrȩtowskiAJ, et al. The Redox Balance in Erythrocytes, Plasma, and Periosteum of Patients with Titanium Fixation of the Jaw. Front Physiol. 2017;8:386. doi:10.3389/fphys.2017.0038628638348
  • JohnsonR, BakerJ. Assay of serum fructosamine: internal vs external standardization. Clin Chem. 1987;33(10):1955–1956. doi:10.1093/clinchem/33.10.19553665082
  • KalousováM, ZimaT, TesařV, et al. Advanced glycoxidation end products in chronic diseases - Clinical chemistry and genetic background. Mutat Res. 2005;579(1–2):37–46. doi:10.1016/j.mrfmmm.2005.03.02416084533
  • KruidenierL, KuiperI, Van DuijnW, et al. Imbalanced secondary mucosal antioxidant response in inflammatory bowel disease. J Pathol. 2003;201(1):17–27. doi:10.1002/path.140812950013
  • GrishamMB, JohnsonGG, LancasterJR. Quantitation of nitrate and nitrite in extracellular fluids. Methods Enzymol. 1996;268:237–246.8782590
  • BorysJ, MaciejczykM, AntonowiczB, et al. Glutathione Metabolism, Mitochondria Activity, and Nitrosative Stress in Patients Treated for Mandible Fractures. J Clin Med. 2019;8(1):127. doi:10.3390/jcm8010127
  • BeckmanJS, IschiropoulosH, ZhuL, et al. Kinetics of superoxide dismutase- and iron-catalyzed nitration of phenolics by peroxynitrite. Arch Biochem Biophys. 1992;298(2):438–445. doi:10.1016/0003-9861(92)90432-V1416975
  • WinkDA, KimS, CoffinD, et al. Detection of S-nitrosothiols by fluorometric and colorimetric methods. Methods Enzymol. 1999;301:201–211.9919568
  • LiebigC, AyalaG, WilksJA, et al. Perineural invasion in cancer: a review of the literature. Cancer. 2009;115(15):3379–3391.19484787
  • FiaschiT, ChiarugiP. Oxidative stress, tumor microenvironment, and metabolic reprogramming: a diabolic liaison. Int J Cell Biol. 2012;2012:762825. doi:10.1155/2012/76282522666258
  • MoldogazievaNT, LutsenkoSV, TerentievAA. Reactive oxygen and nitrogen species–induced protein modifications: implication in carcinogenesis and anticancer therapy. Cancer Res. 2018;78(21):6040–6047. doi:10.1158/0008-5472.CAN-18-098030327380
  • SchieberM, ChandelNS. ROS function in redox signaling and oxidative stress. Curr Biol. 2014;24(10):R453–62. doi:10.1016/j.cub.2014.03.03424845678
  • ChoromańskaB, MyśliwiecP, ŁubaM, et al. Impact of weight loss on the total antioxidant/oxidant potential in patients with morbid obesity—a longitudinal study. Antioxidants. 2020;9(5):376. doi:10.3390/antiox9050376
  • DasuriK, ZhangL, KellerJN. Oxidative stress, neurodegeneration, and the balance of protein degradation and protein synthesis. Free Radic Biol Med. 2013;62:170–185.23000246
  • LushchakVI. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem Biol Interact. 2014;224:164–175. doi:10.1016/j.cbi.2014.10.01625452175
  • SuzukiYJ, CariniM, ButterfieldDA. Protein Carbonylation. Antioxid Redox Signal. 2010;12(3):323–325. doi:10.1089/ars.2009.288719743917
  • GilleryP, JaissonS. Usefulness of non-enzymatic post-translational modification derived products (PTMDPs) as biomarkers of chronic diseases. J Proteomics. 2013;92:228–238. doi:10.1016/j.jprot.2013.02.01523459210
  • StadtmanER, BerlettBS. Reactive oxygen-mediated protein oxidation in aging and disease. Drug Metab Rev. 1998;30(2):225–243. doi:10.3109/036025398089963109606602
  • MorabitoF, CristaniM, SaijaA, et al. Lipid peroxidation and protein oxidation in patients affected by Hodgkin’s lymphoma. Mediators Inflamm. 2004;13(5–6):381–383. doi:10.1080/0962935040000876015770058
  • YilmazIA, AkçayT, CakatayU, et al. Relation between bladder cancer and protein oxidation. Int Urol Nephrol. 2003;35(3):345–350. doi:10.1023/B:UROL.0000022920.93994.ba15160536
  • GoswamiK, NandeeshaH, KonerBC, et al. A comparative study of serum protein-bound sialic acid in benign and malignant prostatic growth: possible role of oxidative stress in sialic acid homeostasis. Prostate Cancer Prostatic Dis. 2007;10(4):356–359. doi:10.1038/sj.pcan.450096517404581
  • RossnerP, TerryMB, GammonMD, et al. Plasma protein carbonyl levels and breast cancer risk. J Cell Mol Med. 2007;11(5):1138–1148. doi:10.1111/j.1582-4934.2007.00097.x17979889
  • AkiraS, KishimotoT. NF-IL6 and NF-kappa B in cytokine gene regulation. Adv Immunol. 1997;65:1–46.9238507
  • KhansariN, ShakibaY, MahmoudiM. Chronic inflammation and oxidative stress as a major cause of age- related diseases and cancer. Recent Pat Inflamm Allergy Drug Discov. 2009;3(1):73–80. doi:10.2174/18722130978715837119149749
  • OnestiCE, BoemerF, JosseC, et al. Tryptophan catabolism increases in breast cancer patients compared to healthy controls without affecting the cancer outcome or response to chemotherapy. J Transl Med. 2019;17(1):239. doi:10.1186/s12967-019-1984-231337401
  • VenkateswaranN, Conacci-SorrellM. Kynurenine: an oncometabolite in colon cancer. Cell Stress. 2020;4(1):24–26. doi:10.15698/cst2020.01.21031922097
  • AhmadS, KhanH, SiddiquiZ, et al. AGEs, RAGEs and s-RAGE; friend or foe for cancer. Semin Cancer Biol. 2018;49:44–55. doi:10.1016/j.semcancer.2017.07.00128712719
  • ChoromańskaB, MyśliwiecP, ŁubaM, et al. Bariatric surgery normalizes protein glycoxidation and nitrosative stress in morbidly obese patients. Antioxidants. 2020;9(11):1087. doi:10.3390/antiox9111087
  • MémetS. NF-κB functions in the nervous system: from development to disease. Biochem Pharmacol. 2006;72(9):1180–1195. doi:10.1016/j.bcp.2006.09.00316997282
  • NomuraA, MajumderK, GiriB, et al. Inhibition of NF-kappa B pathway leads to deregulation of epithelial–mesenchymal transition and neural invasion in pancreatic cancer. Lab Investig. 2016;96(12):1268–1278. doi:10.1038/labinvest.2016.10927775688
  • OttC, JacobsK, HauckeE, et al. Role of advanced glycation end products in cellular signaling. Redox Biol. 2014;2:411–429. doi:10.1016/j.redox.2013.12.01624624331
  • SupruniukE, MaciejczykM, ZalewskaA, et al. Blood profile of cytokines, chemokines, growth factors, and redox biomarkers in response to different protocols of treadmill running in rats. Int J Mol Sci. 2020;21(21):8071. doi:10.3390/ijms21218071
  • FengaC, GangemiS, TeodoroM, et al. 8-Hydroxydeoxyguanosine as a biomarker of oxidative DNA damage in workers exposed to low-dose benzene. Toxicol Rep. 2017;4:291–295. doi:10.1016/j.toxrep.2017.05.00828959652
  • HansenIO, JessP. Possible better long-term survival in left versus right-sided colon cancer - a systematic review. Dan Med J. 2012;59(6):A4444.22677242
  • Korde ChoudhariS, ChaudharyM, BagdeS, et al. Nitric oxide and cancer: a review. World J Surg Oncol. 2013;11(1):118. doi:10.1186/1477-7819-11-11823718886
  • XuW, LiuLZ, LoizidouM, et al. The role of nitric oxide in cancer. Cell Res. 2002;12(5–6):311–320. doi:10.1038/sj.cr.729013312528889
  • NakamuraY, YasuokaH, TsujimotoM, et al. Nitric oxide in breast cancer: induction of vascular endothelial growth factor-C and correlation with metastasis and poor prognosis. Clin Cancer Res. 2006;12(4):1201–1207. doi:10.1158/1078-0432.CCR-05-126916489074
  • FengCW, WangLD, JiaoLH, et al. Expression of p53, inducible nitric oxide synthase and vascular endothelial growth factor in gastric precancerous and cancerous lesions: correlation with clinical features. BMC Cancer. 2002;29(2):8. doi:10.1186/1471-2407-2-8
  • BartesaghiS, RadiR. Fundamentals on the biochemistry of peroxynitrite and protein tyrosine nitration. Redox Biol. 2018;14:618–625. doi:10.1016/j.redox.2017.09.00929154193
  • WilliamsEL, DjamgozMBA. Nitric oxide and metastatic cell behaviour. Bioessays. 2005;27(12):1228–1238. doi:10.1002/bies.2032416299735
  • LalaPK, ChakrabortyC. Role of nitric oxide in carcinogenesis and tumour progression. Lancet Oncol. 2001;2(3):149–156.11902565
  • EiserichJP, BaldusS, BrennanML, et al. Myeloperoxidase, a leukocyte-derived vascular NO oxidase. Science. 2002;296(5577):2391–2394. doi:10.1126/science.110683012089442
  • ChoromańskaB, MyśliwiecP, ŁubaM, et al. The impact of hypertension and metabolic syndrome on nitrosative stress and glutathione metabolism in patients with morbid obesity. Oxid Med Cell Longev. 2020;2020:1057570.32963689
  • PanagopoulosV, LeachDA, ZinonosI, et al. Inflammatory peroxidases promote breast cancer progression in mice via regulation of the tumour microenvironment. Int J Oncol. 2017;50(4):1191–1200. doi:10.3892/ijo.2017.388328260049
  • RymaszewskiA, TateE, YimbesaluJ, et al. The role of neutrophil myeloperoxidase in models of lung tumor development. Cancers. 2014;6(2):1111–1127. doi:10.3390/cancers602111124821130