93
Views
3
CrossRef citations to date
0
Altmetric
Original Research

A Novel miRNA–mRNA Axis Involves in Regulating Transcriptional Disorders in Pancreatic Adenocarcinoma

, , ORCID Icon &
Pages 5989-6004 | Published online: 03 Aug 2021

References

  • Hruban RH, Gaida MM, Thompson E, et al. Why is pancreatic cancer so deadly? The pathologist’s view. J Pathol. 2019;248(2):131–141. doi:10.1002/path.526030838636
  • Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70:7–30.31912902
  • Jelski W, Mroczko B. Biochemical diagnostics of pancreatic cancer - present and future. Clin Chim Acta. 2019;498:47–51. doi:10.1016/j.cca.2019.08.01331430440
  • Zeng S, Pöttler M, Lan B, et al. Chemoresistance in pancreatic cancer. Int J Mol Sci. 2019;20.
  • Pishvaian MJ, Blais EM, Brody JR, et al. Overall survival in patients with pancreatic cancer receiving matched therapies following molecular profiling: a retrospective analysis of the know your tumor registry trial. Lancet Oncol. 2020;21(4):508–518. doi:10.1016/S1470-2045(20)30074-732135080
  • Ansari D, Torén W, Zhou Q, Hu D, Andersson R. Proteomic and genomic profiling of pancreatic cancer. Cell Biol Toxicol. 2019;35(4):333–343. doi:10.1007/s10565-019-09465-930771135
  • Daoud AZ, Mulholland EJ, Cole G, McCarthy HO. MicroRNAs in pancreatic cancer: biomarkers, prognostic, and therapeutic modulators. BMC Cancer. 2019;19.30616523
  • Capula M, Mantini G, Funel N, Giovannetti E. New avenues in pancreatic cancer: exploiting microRNAs as predictive biomarkers and new approaches to target aberrant metabolism. Expert Rev Clin Pharmacol. 2019;12(12):1081–1090. doi:10.1080/17512433.2019.169325631721608
  • Mayr C. Regulation by 3ʹ-untranslated regions. Annu Rev Genet. 2017;51(1):171–194. doi:10.1146/annurev-genet-120116-02470428853924
  • Afonso-Grunz F, Müller S. Principles of miRNA–mRNA interactions: beyond sequence complementarity. Cell Mol Life Sci. 2015;72(16):3127–3141. doi:10.1007/s00018-015-1922-226037721
  • Wan B-S, Cheng M, Zhang L. Insulin-like growth factor 2 mRNA-binding protein 1 promotes cell proliferation via activation of AKT and is directly targeted by microRNA-494 in pancreatic cancer. World J Gastroenterol. 2019;25(40):6063–6076. doi:10.3748/wjg.v25.i40.606331686763
  • Chen G, Ramírez JC, Deng N, et al. Restructured GEO: restructuring gene expression omnibus metadata for genome dynamics analysis. Database. 2019;2019. doi:10.1093/database/bay145
  • Liu J, Zhu C, Zhang L, et al. MicroRNA-1469-5p promotes the invasion and proliferation of pancreatic cancer cells via direct regulating the NDRG1/NF-κB/E-cadherin axis. Hum Cell. 2020;33(4):1176–1185. doi:10.1007/s13577-020-00399-7.32757096
  • Li S, Li X, Xing X, Wang L. miR-597-5p inhibits cell growth and promotes cell apoptosis by targeting ELK1 in pancreatic cancer. Hum Cell. 2020;33(4):1165–1175. doi:10.1007/s13577-020-00395-x32613573
  • Fang Y, Zhou W, Rong Y, et al.Exosomal miRNA-106b from cancer-associated fibroblast promotes gemcitabine resistance in pancreatic cancer.Exp Cell Res.2019;383(1):111543. doi:10.1016/j.yexcr.2019.11154331374207
  • Hu H, Zhang Q, Chen W, et al. MicroRNA-301a promotes pancreatic cancer invasion and metastasis through the JAK/STAT3 signaling pathway by targeting SOCS5. Carcinogenesis. 2020;41(4):502–514. doi:10.1093/carcin/bgz121.31233116
  • Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25(1):25–29. doi:10.1038/75556.10802651
  • Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45(D1):D353–D361. doi:10.1093/nar/gkw109227899662
  • Huang DW, Sherman BT, Tan Q, et al. DAVID bioinformatics resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 2007;35(suppl_2):W169–W175. doi:10.1093/nar/gkm415.17576678
  • Sekiya T, Kato K, Kawaguchi A, Nagata K. Involvement of CTCF in transcription regulation of EGR1 at early G1 phase as an architecture factor. Sci Rep-UK. 2019;9(1):329. doi:10.1038/s41598-018-36753-x
  • Chen D-G, Zhu B, Lv S-Q, et al. Inhibition of EGR1 inhibits glioma proliferation by targeting CCND1 promoter. J Exp Clin Cancer Res. 2017;36(1):186. doi:10.1186/s13046-017-0656-4.29246166
  • Guan X, Deng H, Choi UL, et al. EZH2 overexpression dampens tumor-suppressive signals via an EGR1 silencer to drive breast tumorigenesis. Oncogene. 2020;39(48):7127–7141. doi:10.1038/s41388-020-01484-9.33009487
  • Zhao DY, Jacobs KM, Hallahan DE, Thotala D. Silencing Egr1 attenuates radiation-induced apoptosis in normal tissues while killing cancer cells and delaying tumor growth. Mol Cancer Ther. 2015;14(10):2343–2352. doi:10.1158/1535-7163.MCT-14-105126206332
  • Chang X, Yu C, Li J, Yu S, Chen J. hsa-miR-96 and hsa-miR-217 expression down-regulates with increasing dysplasia in pancreatic intraepithelial neoplasias and intraductal papillary mucinous neoplasms. Int J Med Sci. 2017;14(5):412–418. doi:10.7150/ijms.1864128539816
  • Yang X, Li D, Qi Y-Z, Chen W, Yang C-H, Jiang Y-H. MicroRNA-217 ameliorates inflammatory damage of endothelial cells induced by oxidized LDL by targeting EGR1. Mol Cell Biochem. 2020;475(1–2):41–51. doi:10.1007/s11010-020-03857-w32737769
  • Hu Y, Yang Z, Bao D, Ni J-S, Lou J. miR-455-5p suppresses hepatocellular carcinoma cell growth and invasion via IGF-1R/AKT/GLUT1 pathway by targeting IGF-1R. Pathol Res Pract. 2019;215(12):152674. doi:10.1016/j.prp.2019.15267431732382
  • Wang W, Mu S, Zhao Q, Xue L, Wang S. Identification of differentially expressed microRNAs and the potential of microRNA-455-3p as a novel prognostic biomarker in glioma. Oncol Lett. 2019;18:6150–6156.31788089
  • Shilatifard A, Smith ER, Shilatifard A. Born to run: control of transcription elongation by RNA polymerase II. Nat Rev Mol Cell Biol. 2018;19:464–478.29740129
  • Jonkers I, Lis JT. Getting up to speed with transcription elongation by RNA polymerase II. Nat Rev Mol Cell Bio. 2015;16(3):167–177. doi:10.1038/nrm395325693130
  • Trizzino M, Barbieri E, Petracovici A, et al. The tumor suppressor ARID1A controls global transcription via pausing of RNA polymerase II. Cell Rep. 2018;23(13):3933–3945. doi:10.1016/j.celrep.2018.05.09729949775
  • Miller GJ, Miller HL, van Bokhoven A, et al. Aberrant HOXC expression accompanies the malignant phenotype in human prostate. Cancer Res. 2003;63:5879–5888.14522913
  • Tsumura K, Arai E, Tian Y, et al. Establishment of permutation for cancer risk estimation in the urothelium based on genome-wide DNA methylation analysis. Carcinogenesis. 2019;40(11):1308–1319. doi:10.1093/carcin/bgz112.31241739
  • Feyder M, Karlsson R-M, Mathur P, et al. Association of mouse Dlg4(PSD-95) gene deletion and human DLG gene variation with phenotypes relevant to autism spectrum disorders and Williams‘ syndrome. Am J Psychiatry. 2010;167(12):1508–1517. doi:10.1176/appi.ajp.2010.10040484.20952458
  • Bustos FJ, Ampuero E, Jury N, et al. Epigenetic editing of the Dlg4/PSD95 gene improves cognition in aged and Alzheimer’s disease mice. Brain. 2017;140(12):3252–3268. doi:10.1093/brain/awx27229155979
  • Krishnan ML, Van Steenwinckel J, Schang A, et al. Integrative genomics of microglia implicates DLG4 (PSD95) in the white matter development of preterm infants. Nat Commun. 2017;8. doi:10.1038/s41467-017-00422-w28364116
  • Moutton S, Bruel AL, Assoum M, et al. Truncating variants of the DLG4 gene are responsible for intellectual disability with marfanoid features. Clin Genet. 2018;93(6):1172–1178. doi:10.1111/cge.1324329460436
  • Berkel C, Cacan E. DYNLL1 is hypomethylated and upregulated in a tumor stage- and grade-dependent manner and associated with increased mortality in hepatocellular carcinoma. Exp Mol Pathol. 2020;117:104567. doi:10.1016/j.yexmp.2020.10456733171156
  • Berkel C, Cacan E. In silico analysis of DYNLL1 expression in ovarian cancer chemoresistance. Cell Biol Int. 2020;44(8):1598–1605. doi:10.1002/cbin.1135232208526
  • He YJ, Meghani K, Caron M-C, et al. DYNLL1 binds to MRE11 to limit DNA end resection in BRCA1-deficient cells. Nature. 2018;563(7732):522–526. doi:10.1038/s41586-018-0670-5.30464262
  • Chen X, Sahasrabuddhe AA, Szankasi P, et al. Fbxo45-mediated degradation of the tumor-suppressor Par-4 regulates cancer cell survival. Cell Death Differ. 2014;21(10):1535–1545. doi:10.1038/cdd.2014.92.24992930