69
Views
2
CrossRef citations to date
0
Altmetric
Original Research

βKlotho Inhibits Cell Proliferation by Downregulating ELK4 and Predicts Favorable Prognosis in Prostate Cancer

, , , , , , , , & show all
Pages 6377-6387 | Published online: 12 Aug 2021

References

  • SiegelRL, MillerKD, JemalA. Cancer statistics, 2020. CA Cancer J Clin. 2020;70(1):7–30.31912902
  • CarlssonSV, VickersAJ. Screening for prostate cancer. Med Clin North Am. 2020;104(6):1051–1062. doi:10.1016/j.mcna.2020.08.00733099450
  • YeDW, ZhuY. Prostate cancer and prostatic diseases best of China, 2018. Prostate Cancer Prostatic Dis. 2019;22(1):1–2. doi:10.1038/s41391-018-0117-y30518869
  • BlackwelderR, ChessmanA. Prostate cancer screening: shared decision-making for screening and treatment. Prim Care. 2019;46(1):149–155. doi:10.1016/j.pop.2018.10.01230704655
  • YuA, GuoK, QinQ, XingC, ZuX. Clinicopathological and prognostic significance of osteopontin expression in patients with prostate cancer: a systematic review and meta-analysis. Biosci Rep. 2021. doi:10.1042/BSR20203531
  • LiT, WangQ, HongX, et al. RRBP1 is highly expressed in prostate cancer and correlates with prognosis. Cancer Manag Res. 2019;11:3021–3027. doi:10.2147/CMAR.S18663231118771
  • JiangF, DaiL, YangS, et al. Increasing of FKBP9 can predict poor prognosis in patients with prostate cancer. Pathol Res Pract. 2020;216(1):152732. doi:10.1016/j.prp.2019.15273231780055
  • XieY, SuN, YangJ, et al. FGF/FGFR signaling in health and disease. Signal Transduct Target Ther. 2020;5(1):181.32879300
  • Kuro-oM. Klotho and βKlotho. Adv Exp Med Biol. 2012;728:25–40.22396160
  • KuroOM. The Klotho proteins in health and disease. Nat Rev Nephrol. 2019;15(1):27–44. doi:10.1038/s41581-018-0078-330455427
  • KaleA, SankrityayanH, AndersHJ, GaikwadAB. Epigenetic and non-epigenetic regulation of Klotho in kidney disease. Life Sci. 2021;264:118644. doi:10.1016/j.lfs.2020.11864433141039
  • LinZZ, HsuC, JengYM, et al. Klotho-beta and fibroblast growth factor 19 expression correlates with early recurrence of resectable hepatocellular carcinoma. Liver Int. 2019;39(9):1682–1691. doi:10.1111/liv.1405530698907
  • LiuZ, QiS, ZhaoX, et al. Metformin inhibits 17beta-estradiol-induced epithelial-to-mesenchymal transition via βKlotho-related ERK1/2 signaling and AMPKalpha signaling in endometrial adenocarcinoma cells. Oncotarget. 2016;7(16):21315–21331. doi:10.18632/oncotarget.704026824324
  • LiF, LiX, LiZ, JiW, LuS, XiaW. βKlotho is identified as a target for theranostics in non-small cell lung cancer. Theranostics. 2019;9(25):7474–7489. doi:10.7150/thno.3558231695781
  • LiuZ, ZhangH, DingS, et al. βKlotho inhibits androgen/androgen receptor-associated epithelial-mesenchymal transition in prostate cancer through inactivation of ERK1/2 signaling. Oncol Rep. 2018;40(1):217–225.29749458
  • MakkonenH, JääskeläinenT, Pitkänen-ArsiolaT, et al. Identification of ETS-like transcription factor 4 as a novel androgen receptor target in prostate cancer cells. Oncogene. 2008;27(36):4865–4876. doi:10.1038/onc.2008.12518469865
  • MauriceD, CostelloP, SargentM, TreismanR. ERK signaling controls innate-like CD8(+) T cell differentiation via the ELK4 (SAP-1) and ELK1 transcription factors. J Immunol. 2018;201(6):1681–1691. doi:10.4049/jimmunol.180070430068599
  • XieL. MKL1/2 and ELK4 co-regulate distinct serum response factor (SRF) transcription programs in macrophages. BMC Genomics. 2014;15:301. doi:10.1186/1471-2164-15-30124758171
  • LiuQ, ZhuL, LiuX, et al. TRA2A-induced upregulation of LINC00662 regulates blood-brain barrier permeability by affecting ELK4 mRNA stability in Alzheimer’s microenvironment. RNA Biol. 2020;17(9):1293–1308. doi:10.1080/15476286.2020.175605532372707
  • LongR, LiuZ, LiJ, ZhangY, YuH. HCG11 up-regulation induced by ELK4 suppressed proliferation in vestibular schwannoma by targeting miR-620/ELK4. Cancer Cell Int. 2021;21(1):5. doi:10.1186/s12935-020-01691-033402177
  • ZhuZ, SongJ, GuoY, et al. LAMB3 promotes tumour progression through the AKT-FOXO3/4 axis and is transcriptionally regulated by the BRD2/acetylated ELK4 complex in colorectal cancer. Oncogene. 2020;39(24):4666–4680. doi:10.1038/s41388-020-1321-532398865
  • ShaikhibrahimZ, LindstrotA, LangerB, BuettnerR, WernertN. Differential expression of ETS family members in prostate cancer tissues and androgen-sensitive and insensitive prostate cancer cell lines. Int J Mol Med. 2011;28(1):89–93.21491078
  • Ha ChungB, HorieS, ChiongE. The incidence, mortality, and risk factors of prostate cancer in Asian men. Prostate Int. 2019;7(1):1–8. doi:10.1016/j.prnil.2018.11.00130937291
  • TeradaN, AkamatsuS, KobayashiT, InoueT, OgawaO, AntonarakisES. Prognostic and predictive biomarkers in prostate cancer: latest evidence and clinical implications. Ther Adv Med Oncol. 2017;9(8):565–573. doi:10.1177/175883401771921528794807
  • FilellaX, FojL. Novel biomarkers for prostate cancer detection and prognosis. Adv Exp Med Biol. 2018;1095:15–39.30229547
  • HoterA, RizkS, NaimHY. The multiple roles and therapeutic potential of molecular chaperones in prostate cancer. Cancers. 2019;11(8):1194. doi:10.3390/cancers11081194
  • NiWD, YangZT, CuiCA, CuiY, FangLY, XuanYH. Tenascin-C is a potential cancer-associated fibroblasts marker and predicts poor prognosis in prostate cancer. Biochem Biophys Res Commun. 2017;486(3):607–612. doi:10.1016/j.bbrc.2017.03.02128341124
  • SommE, HenryH, BruceSJ, et al. βKlotho deficiency shifts the gut-liver bile acid axis and induces hepatic alterations in mice. Am J Physiol Endocrinol Metab. 2018;315(5):E833–E847. doi:10.1152/ajpendo.00182.201829944388
  • HoriS, MiyakeM, OnishiS, et al. Clinical significance of alpha and βKlotho in urothelial carcinoma of the bladder. Oncol Rep. 2016;36(4):2117–2125. doi:10.3892/or.2016.505327573985
  • QinF, ZhangY, LiuJ, LiH. SLC45A3-ELK4 functions as a long non-coding chimeric RNA. Cancer Lett. 2017;404:53–61. doi:10.1016/j.canlet.2017.07.00728716526
  • ZhuD, OsukaS, ZhangZ, et al. BAI1 suppresses medulloblastoma formation by protecting p53 from Mdm2-mediated degradation. Cancer Cell. 2018;33(6):1004–1016.e1005. doi:10.1016/j.ccell.2018.05.00629894688