105
Views
15
CrossRef citations to date
0
Altmetric
Original Research

Analysis of m6A-Related lncRNAs for Prognosis Value and Response to Immune Checkpoint Inhibitors Therapy in Hepatocellular Carcinoma

ORCID Icon, , , , , & show all
Pages 6451-6471 | Published online: 16 Aug 2021

References

  • YangJD, HainautP, GoresGJ, AmadouA, PlymothA, RobertsLR. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol. 2019;16(10):589–604. doi:10.1038/s41575-019-0186-y31439937
  • LlovetJM, MontalR, SiaD, FinnRS. Molecular therapies and precision medicine for hepatocellular carcinoma. Nat Rev Clin Oncol. 2018;15(10):599–616. doi:10.1038/s41571-018-0073-430061739
  • LuC, RongD, ZhangB, et al. Current perspectives on the immunosuppressive tumor microenvironment in hepatocellular carcinoma: challenges and opportunities. Mol Cancer. 2019;18(1):130. doi:10.1186/s12943-019-1047-631464625
  • HeL, LiH, WuA, PengY, ShuG, YinG. Functions of N6-methyladenosine and its role in cancer. Mol Cancer. 2019;18(1):176. doi:10.1186/s12943-019-1109-931801551
  • ChenM, WeiL, LawCT, et al. RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2. Hepatology. 2018;67(6):2254–2270. doi:10.1002/hep.2968329171881
  • LiJ, ZhuL, ShiY, LiuJ, LinL, ChenX. m6A demethylase FTO promotes hepatocellular carcinoma tumorigenesis via mediating PKM2 demethylation. Am J Transl Res. 2019;11(9):6084–6092.31632576
  • HouJ, ZhangH, LiuJ, et al. YTHDF2 reduction fuels inflammation and vascular abnormalization in hepatocellular carcinoma. Mol Cancer. 2019;18(1):163. doi:10.1186/s12943-019-1082-331735169
  • BhanA, SoleimaniM, MandalSS. Long Noncoding RNA and Cancer: a New Paradigm. Cancer Res. 2017;77(15):3965–3981. doi:10.1158/0008-5472.CAN-16-263428701486
  • HuangZ, ZhouJK, PengY, HeW, HuangC. The role of long noncoding RNAs in hepatocellular carcinoma. Mol Cancer. 2020;19(1):77. doi:10.1186/s12943-020-01188-432295598
  • DaiF, WuY, LuY, et al. Crosstalk between RNA m(6)A Modification and Non-coding RNA Contributes to Cancer Growth and Progression. Mol Ther Nucleic Acids. 2020;22:62–71. doi:10.1016/j.omtn.2020.08.00432911345
  • HuangH, WengH, ChenJ. m(6)A Modification in Coding and Non-coding RNAs: roles and Therapeutic Implications in Cancer. Cancer Cell. 2020;37(3):270–288. doi:10.1016/j.ccell.2020.02.00432183948
  • ChenY, LinY, ShuY, HeJ, GaoW. Interaction between N(6)-methyladenosine (m(6)A) modification and noncoding RNAs in cancer. Mol Cancer. 2020;19(1):94. doi:10.1186/s12943-020-01207-432443966
  • FaziF, FaticaA. Interplay Between N (6)-Methyladenosine (m(6)A) and Non-coding RNAs in Cell Development and Cancer. Front Cell Dev Biol. 2019;7:116. doi:10.3389/fcell.2019.0011631316981
  • ZuoX, ChenZ, GaoW, et al. M6A-mediated upregulation of LINC00958 increases lipogenesis and acts as a nanotherapeutic target in hepatocellular carcinoma. J Hematol Oncol. 2020;13(1):5. doi:10.1186/s13045-019-0839-x31915027
  • LanT, LiH, ZhangD, et al. KIAA1429 contributes to liver cancer progression through N6-methyladenosine-dependent post-transcriptional modification of GATA3. Mol Cancer. 2019;18(1):186. doi:10.1186/s12943-019-1106-z31856849
  • MaS, ChenC, JiX, et al. The interplay between m6A RNA methylation and noncoding RNA in cancer. J Hematol Oncol. 2019;12(1):121. doi:10.1186/s13045-019-0805-731757221
  • XuR, FengF, YuX, LiuZ, LaoL. LncRNA SNHG4 promotes tumour growth by sponging miR-224-3p and predicts poor survival and recurrence in human osteosarcoma. Cell Prolif. 2018;51(6):e12515. doi:10.1111/cpr.1251530152090
  • ChenDB, XieXW, ZhaoYJ, et al. RFX5 promotes the progression of hepatocellular carcinoma through transcriptional activation of KDM4A. Sci Rep. 2020;10(1):14538. doi:10.1038/s41598-020-71403-132883983
  • SunS, YangF, ZhuY, ZhangS. KDM4A promotes the growth of non-small cell lung cancer by mediating the expression of Myc via DLX5 through the Wnt/β-catenin signaling pathway. Life Sci. 2020;262:118508. doi:10.1016/j.lfs.2020.11850833002480
  • MuH, XiangL, LiS, RaoD, WangS, YuK. MiR-10a functions as a tumor suppressor in prostate cancer via targeting KDM4A. J Cell Biochem. 2019;120(4):4987–4997. doi:10.1002/jcb.2777430302800
  • ChongW, ShangL, LiuJ, et al. m(6)A regulator-based methylation modification patterns characterized by distinct tumor microenvironment immune profiles in colon cancer. Theranostics. 2021;11(5):2201–2217. doi:10.7150/thno.5271733500720
  • ZhangB, WuQ, LiB, WangD, WangL, ZhouYL. m(6)A regulator-mediated methylation modification patterns and tumor microenvironment infiltration characterization in gastric cancer. Mol Cancer. 2020;19(1):53. doi:10.1186/s12943-020-01170-032164750
  • SuR, DongL, LiY, et al. Targeting FTO Suppresses Cancer Stem Cell Maintenance and Immune Evasion. Cancer Cell. 2020;38(1):79–96.e11. doi:10.1016/j.ccell.2020.04.01732531268
  • HanD, LiuJ, ChenC, et al. Anti-tumour immunity controlled through mRNA m(6)A methylation and YTHDF1 in dendritic cells. Nature. 2019;566(7743):270–274. doi:10.1038/s41586-019-0916-x30728504
  • PaiSG, CarneiroBA, MotaJM, et al. Wnt/beta-catenin pathway: modulating anticancer immune response. J Hematol Oncol. 2017;10(1):101. doi:10.1186/s13045-017-0471-628476164
  • JanghorbanM, XinL, RosenJM, ZhangXH. Notch Signaling as a Regulator of the Tumor Immune Response: to Target or Not To Target?Front Immunol. 2018;9:1649. doi:10.3389/fimmu.2018.0164930061899
  • HeideggerS, WintgesA, StritzkeF, et al. RIG-I activation is critical for responsiveness to checkpoint blockade. Sci Immunol. 2019;4:39. doi:10.1126/sciimmunol.aau8943
  • JohnstonMP, KhakooSI. Immunotherapy for hepatocellular carcinoma: current and future. World J Gastroenterol. 2019;25(24):2977–2989. doi:10.3748/wjg.v25.i24.297731293335
  • TopalianSL, TaubeJM, AndersRA, PardollDM. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer. 2016;16(5):275–287. doi:10.1038/nrc.2016.3627079802
  • QinS, XuL, YiM, YuS, WuK, LuoS. Novel immune checkpoint targets: moving beyond PD-1 and CTLA-4. Mol Cancer. 2019;18(1):155. doi:10.1186/s12943-019-1091-231690319
  • AliMA, MatboliM, TarekM, et al. Epigenetic regulation of immune checkpoints: another target for cancer immunotherapy?Immunotherapy. 2017;9(1):99–108. doi:10.2217/imt-2016-011128000527
  • XuF, JinT, ZhuY, DaiC. Immune checkpoint therapy in liver cancer. J Exp Clin Cancer Res. 2018;37(1):110. doi:10.1186/s13046-018-0777-429843754
  • ZhangY, ZhangL, XuY, WuX, ZhouY, MoJ. Immune-related long noncoding RNA signature for predicting survival and immune checkpoint blockade in hepatocellular carcinoma. J Cell Physiol. 2020;235(12):9304–9316. doi:10.1002/jcp.2973032330311
  • SunJ, ZhangZ, BaoS, et al. Identification of tumor immune infiltration-associated lncRNAs for improving prognosis and immunotherapy response of patients with non-small cell lung cancer. J Immunother Cancer. 2020;8:1. doi:10.1136/jitc-2019-000110
  • ShuwenH, XiY, QuanQ, YinJ, MiaoD. Can small nucleolar RNA be a novel molecular target for hepatocellular carcinoma?Gene. 2020;733:144384. doi:10.1016/j.gene.2020.14438431978508
  • LiW, XuW, SongJS, WuT, WangWX. LncRNA SNHG16 promotes cell proliferation through miR-302a-3p/FGF19 axis in hepatocellular carcinoma. Neoplasma. 2019;66(3):397–404. doi:10.4149/neo_2018_180720N50430784284
  • ZhangPF, WangF, WuJ, et al. LncRNA SNHG3 induces EMT and sorafenib resistance by modulating the miR-128/CD151 pathway in hepatocellular carcinoma. J Cell Physiol. 2019;234(3):2788–2794. doi:10.1002/jcp.2709530132868
  • LiH, HongJ, WijayakulathilakaW. Long non-coding RNA SNHG4 promotes cervical cancer progression through regulating c-Met via targeting miR-148a-3p. Cell Cycle. 2019;18(23):3313–3324. doi:10.1080/15384101.2019.167407131590627
  • WangZY, DuanY, WangP. SP1-mediated upregulation of lncRNA SNHG4 functions as a ceRNA for miR-377 to facilitate prostate cancer progression through regulation of ZIC5. J Cell Physiol. 2020;235(4):3916–3927. doi:10.1002/jcp.2928531608997
  • YipKW, ReedJC. Bcl-2 family proteins and cancer. Oncogene. 2008;27(50):6398–6406. doi:10.1038/onc.2008.30718955968
  • GaumerS, GuénalI, BrunS, ThéodoreL, MignotteB. Bcl-2 and Bax mammalian regulators of apoptosis are functional in Drosophila. Cell Death Differ. 2000;7(9):804–814. doi:10.1038/sj.cdd.440071411042675