97
Views
4
CrossRef citations to date
0
Altmetric
Original Research

Targeted Inhibition of HK-II Reversed the Warburg Effect to Improve the Radiosensitivity of Laryngeal Carcinoma

ORCID Icon, , , ORCID Icon, &
Pages 8063-8076 | Published online: 27 Oct 2021

References

  • Dai LB, Yu Q, Zhou SH, et al. Effect of combination of curcumin and GLUT-1 AS-ODN on radiosensitivity of laryngeal carcinoma through regulating autophagy. Head Neck. 2020;42(9):2287–2297. doi:10.1002/hed.2618032314842
  • Yan SX, Luo XM, Zhou SH, et al. Effect of antisense oligodeoxynucleotides glucose transporter-1 on enhancement of radiosensitivity of laryngeal carcinoma. Int J Med Sci. 2013;10(10):1375–1386. doi:10.7150/ijms.685523983599
  • Lu ZJ, Yu Q, Zhou SH, et al. Construction of a GLUT-1 and HIF-1α gene knockout cell model in HEp-2 cells using the CRISPR/Cas9 technique. Cancer Manag Res. 2019;11:2087–2096. doi:10.2147/CMAR.S18385930881132
  • Bao YY, Zhou SH, Lu ZJ, et al. Inhibiting GLUT-1 expression and PI3K/Akt signaling using apigenin improves the radiosensitivity of laryngeal carcinoma in vivo. Oncol Rep. 2015;34(4):1805–1814. doi:10.3892/or.2015.415826238658
  • Luo XM, Xu B, Zhou ML, et al. Co-inhibition of GLUT-1 expression and the PI3K/Akt signaling pathway to enhance the radiosensitivity of laryngeal carcinoma xenografts in vivo. PLoS One. 2015;10(11):e0143306. doi:10.1371/journal.pone.014330626600164
  • Zhong JT, Zhou SH. Warburg effect, hexokinase-II, and radioresistance of laryngeal carcinoma. Oncotarget. 2017;8(8):14133–14146. doi:10.18632/oncotarget.1304427823965
  • Koukourakis MI, Giatromanolaki A. Warburg effect, lactate dehydrogenase, and radio/chemo-therapy efficacy. Int J Radiat Biol. 2019;95(4):408–426. doi:10.1080/09553002.2018.149004129913092
  • Gupta S, Dwarakanath BS. Modulation of immuno-biome during radiosensitization of tumors by glycolytic inhibitors. Curr Med Chem. 2020;27(24):4002–4015. doi:10.2174/092986732566618060110114529852858
  • Han CY, Patten DA, Lee SG, et al. p53 promotes chemoresponsiveness by regulating hexokinase II gene transcription and metabolic reprogramming in epithelial ovarian cancer. Mol Carcinog. 2019;58(11):2161–2174. doi:10.1002/mc.2310631486135
  • Mims J, Bansal N, Bharadwaj MS, et al. Energy metabolism in a matched model of radiation resistance for head and neck squamous cell cancer. Radiat Res. 2015;183(3):291–304. doi:10.1667/RR13828.125738895
  • Wu J, Hu L, Wu F, et al. Poor prognosis of hexokinase 2 overexpression in solid tumors of digestive system: a meta-analysis. Oncotarget. 2017;8(19):32332–32344. doi:10.18632/oncotarget.1597428415659
  • Yang L, Yan X, Chen J, et al. Hexokinase 2 discerns a novel circulating tumor cell population associated with poor prognosis in lung cancer patients. Proc Natl Acad Sci U S A. 2021;118(11):e2012228118. doi:10.1073/pnas.201222811833836566
  • Wang SJ, Li XD, Wu LP, et al. MicroRNA-202 suppresses glycolysis of pancreatic cancer by targeting hexokinase 2. J Cancer. 2021;12(4):1144–1153. doi:10.7150/jca.4337933442412
  • Fan L, Huang C, Li J, et al. Long non‑coding RNA urothelial cancer associated 1 regulates radioresistance via the hexokinase 2/glycolytic pathway in cervical cancer. Int J Mol Med. 2018;42(4):2247–2259.30015920
  • Kumari N, Das A, Bhatt AN. Interleukin-6 confers radio-resistance by inducing Akt-mediated glycolysis and reducing mitochondrial damage in cells. J Biochem. 2020;167(3):303–314.31670806
  • Huang X, Liu M, Sun H, et al. HK2 is a radiation resistant and independent negative prognostic factor for patients with locally advanced cervical squamous cell carcinoma. Int J Clin Exp Pathol. 2015;8(4):4054–4063.26097593
  • Gao Y, Wang Z, Tong J, et al. LncRNA loc285194 inhibits tumor growth of laryngeal squamous cell carcinoma cells by downregulating hexokinase 2. Exp Ther Med. 2019;18(4):2378–2384.31555348
  • Hui L, Zhang J, Guo X. MiR-125b-5p suppressed the glycolysis of laryngeal squamous cell carcinoma by down-regulating hexokinase-2. Biomed Pharmacother. 2018;103:1194–1201. doi:10.1016/j.biopha.2018.04.09829864898
  • Chen J, Zhang S, Li Y, et al. Hexokinase 2 overexpression promotes the proliferation and survival of laryngeal squamous cell carcinoma. Tumour Biol. 2014;35(4):3743–3753. doi:10.1007/s13277-013-1496-224363061
  • Sun Z, Zhang W, Li Q. miR-125a suppresses viability and glycolysis and induces apoptosis by targeting hexokinase 2 in laryngeal squamous cell carcinoma. Cell Biosci. 2017;7:51. doi:10.1186/s13578-017-0178-y29043013
  • Min JW, Kim KI, Kim HA, et al. INPP4B-mediated tumor resistance is associated with modulation of glucose metabolism via hexokinase 2 regulation in laryngeal cancer cells. Biochem Biophys Res Commun. 2013;440(1):137–142. doi:10.1016/j.bbrc.2013.09.04124051093
  • Zhong JT, Yu Q, Zhou SH, et al. GLUT-1 siRNA enhances radiosensitization of laryngeal cancer stem cells via enhanced DNA damage, cell cycle redistribution, and promotion of apoptosis in vitro and in vivo. Onco Targets Ther. 2019;12:9129–9142. doi:10.2147/OTT.S22142331806998
  • Feng Y, Xiong Y, Qiao T, et al. Lactate dehydrogenase A: a key player in carcinogenesis and potential target in cancer therapy. Cancer Med. 2018;7(12):6124–6136. doi:10.1002/cam4.182030403008
  • Hu Q, Qin Y, Ji S, et al. UHRF1 promotes aerobic glycolysis and proliferation via suppression of SIRT4 in pancreatic cancer. Cancer Lett. 2019;452:226–236. doi:10.1016/j.canlet.2019.03.02430905812
  • Deng F, Zhou R, Lin C, et al. Tumor-secreted dickkopf2 accelerates aerobic glycolysis and promotes angiogenesis in colorectal cancer. Theranostics. 2019;9(4):1001–1014. doi:10.7150/thno.3005630867812
  • Gao W, Zhang Y, Luo H, et al. Targeting SKA3 suppresses the proliferation and chemoresistance of laryngeal squamous cell carcinoma via impairing PLK1-AKT axis-mediated glycolysis. Cell Death Dis. 2020;11(10):919. doi:10.1038/s41419-020-03104-633106477
  • Leung E, Cairns RA, Chaudary N, et al. Metabolic targeting of HIF-dependent glycolysis reduces lactate, increases oxygen consumption and enhances response to high-dose single-fraction radiotherapy in hypoxic solid tumors. BMC Cancer. 2017;17(1):418. doi:10.1186/s12885-017-3402-628619042
  • Zhan S, Ni B. hsa-miR-9-5p down-regulates HK2 and confers radiosensitivity to nasopharyngeal carcinoma. Technol Cancer Res Treat. 2021;20:1533033821997822. doi:10.1177/153303382199782233627057
  • Liu Y, Murray-Stewart T, Casero RA Jr, et al. Targeting hexokinase 2 inhibition promotes radiosensitization in HPV16 E7-induced cervical cancer and suppresses tumor growth. Int J Oncol. 2017;50(6):2011–2023. doi:10.3892/ijo.2017.397928498475
  • Vartanian A, Agnihotri S, Wilson MR, et al. Targeting hexokinase 2 enhances response to radio-chemotherapy in glioblastoma. Oncotarget. 2016;7(43):69518–69535. doi:10.18632/oncotarget.1168027588472
  • Newman WC, Monaco EA 3rd. Sensitization of glioblastoma cells to irradiation by modulating the glucose metabolism. Neurosurgery. 2015;77(4):N16. doi:10.1227/01.neu.0000471838.05005.51
  • Robey RB, Hay N. Mitochondrial hexokinases, novel mediators of the antiapoptotic effects of growth factors and Akt. Oncogene. 2006;25(34):4683–4696. doi:10.1038/sj.onc.120959516892082
  • Shao S, Qin T, Qian W, et al. Positive feedback in Cav-1-ROS signalling in PSCs mediates metabolic coupling between PSCs and tumour cells. J Cell Mol Med. 2020;24(16):9397–9408. doi:10.1111/jcmm.1559632633891
  • Ashton TM, Fokas E, Kunz-Schughart LA, et al. The anti-malarial atovaquone increases radiosensitivity by alleviating tumour hypoxia. Nat Commun. 2016;7:12308. doi:10.1038/ncomms1230827453292
  • Benej M, Hong X, Vibhute S, et al. Papaverine and its derivatives radiosensitize solid tumors by inhibiting mitochondrial metabolism. Proc Natl Acad Sci U S A. 2018;115(42):10756–10761. doi:10.1073/pnas.180894511530201710
  • Ohashi T, Aoki M, Tomita H, et al. M2-like macrophage polarization in high lactic acid-producing head and neck cancer. Cancer Sci. 2017;108(6):1128–1134. doi:10.1111/cas.1324428370718
  • Brand A, Singer K, Koehl GE, et al. LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells. Cell Metab. 2016;24(5):657–671. doi:10.1016/j.cmet.2016.08.01127641098
  • Li C, Jia L, Yu Y, et al. Lactic acid induced microRNA-744 enhances motility of SiHa cervical cancer cells through targeting ARHGAP5. Chem Biol Interact. 2019;298:86–95. doi:10.1016/j.cbi.2018.10.02730423314