109
Views
3
CrossRef citations to date
0
Altmetric
Review

The Biological Synthesis and the Function of Mucin 2 in Pseudomyxoma Peritonei

&
Pages 7909-7917 | Published online: 15 Oct 2021

References

  • Govaerts K, Lurvink RJ, De Hingh IHJT, et al. Appendiceal tumours and pseudomyxoma peritonei: literature review with PSOGI/EURACAN clinical practice guidelines for diagnosis and treatment. Eur J Surg Oncol. 2021;47:11–35. doi:10.1016/j.ejso.2020.02.01232199769
  • Carr NJ, Cecil TD, Mohamed F, et al. A consensus for classification and pathologic reporting of pseudomyxoma peritonei and associated appendiceal neoplasia: the results of the Peritoneal Surface Oncology Group International (PSOGI) modified Delphi process. Am J Surg Pathol. 2016;40:14–26. doi:10.1097/pas.000000000000053526492181
  • Li Y, Xu HB, Peng Z, Cui SZ, Wu W. Chinese expert consensus on cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for pseudomyxoma peritonei. Natl Med J China. 2019;99:1527–1535.
  • O’Connell JT, Hacker CM, Barsky SH. MUC2 is a molecular marker for pseudomyxoma peritonei. Mod Pathol. 2002;15:958–972. doi:10.1097/01.Mp.0000026617.52466.9f12218214
  • O’Connell JT, Tomlinson JS, Roberts AA, McGonigle KF, Barsky SH. Pseudomyxoma peritonei is a disease of MUC2-expressing goblet cells. Am J Pathol. 2002;161:551–564. doi:10.1016/s0002-9440(10)64211-312163380
  • Amini A, Masoumi-Moghaddam S, Ehteda A, Morris DL. Secreted mucins in pseudomyxoma peritonei: pathophysiological significance and potential therapeutic prospects. Orphanet J Rare Dis. 2014;9:71. doi:10.1186/1750-1172-9-7124886459
  • Pillai K, Akhter J, Mekkawy A, Chua TC, Morris DL. Physical and chemical characteristics of mucin secreted by pseudomyxoma peritonei (PMP). Int J Med Sci. 2017;14:18–28. doi:10.7150/ijms.1642228138305
  • Amini A, Masoumi-Moghaddam S, Ehteda A, Liauw W, Morris DL. Potentiation of chemotherapeutics by bromelain and N-acetylcysteine: sequential and combination therapy of gastrointestinal cancer cells. Am J Cancer Res. 2016;6:350–369.27186409
  • Amini A, Masoumi-Moghaddam S, Ehteda A, Liauw W, Morris DL. Depletion of mucin in mucin-producing human gastrointestinal carcinoma: results from in vitro and in vivo studies with bromelain and N-acetylcysteine. Oncotarget. 2015;6:33329–33344. doi:10.18632/oncotarget.525926436698
  • Pillai K, Akhter J, Chua TC, Morris DL. A formulation for in situ lysis of mucin secreted in pseudomyxoma peritonei. Int J Cancer. 2014;134:478–486. doi:10.1002/ijc.2838023843173
  • Yamashita MSA, Melo EO. Mucin 2 (MUC2) promoter characterization: an overview. Cell Tissue Res. 2018;374:455–463. doi:10.1007/s00441-018-2916-930218241
  • Van Seuningen I, Pigny P, Perrais M, Porchet N, Aubert JP. Transcriptional regulation of the 11p15 mucin genes. Towards new biological tools in human therapy, in inflammatory diseases and cancer? Front Biosci. 2001;6:D1216–D1234.11578973
  • Javitt G, Khmelnitsky L, Albert L, et al. Assembly mechanism of mucin and von Willebrand factor polymers. Cell. 2020;183:717–729.e716. doi:10.1016/j.cell.2020.09.02133031746
  • Nilsson HE, Ambort D, Bäckström M, et al. Intestinal MUC2 mucin supramolecular topology by packing and release resting on D3 domain assembly. J Mol Biol. 2014;426:2567–2579. doi:10.1016/j.jmb.2014.04.02724816392
  • Perez-Vilar J, Hill RL. The structure and assembly of secreted mucins. J Biol Chem. 1999;274:31751–31754. doi:10.1074/jbc.274.45.3175110542193
  • Johansson ME, Hansson GC. Immunological aspects of intestinal mucus and mucins. Nat Rev Immunol. 2016;16:639–649. doi:10.1038/nri.2016.8827498766
  • Bansil R, Turner BS. The biology of mucus: composition, synthesis and organization. Adv Drug Deliv Rev. 2018;124:3–15. doi:10.1016/j.addr.2017.09.02328970050
  • Asker N, Axelsson MA, Olofsson SO, Hansson GC. Dimerization of the human MUC2 mucin in the endoplasmic reticulum is followed by a N-glycosylation-dependent transfer of the mono- and dimers to the Golgi apparatus. J Biol Chem. 1998;273:18857–18863. doi:10.1074/jbc.273.30.188579668061
  • Bansil R, Turner BS. Mucin structure, aggregation, physiological functions and biomedical applications. Curr Opin Colloid Interface Sci. 2006;11:164–170. doi:10.1016/j.cocis.2005.11.001
  • Demouveaux B, Gouyer V, Gottrand F, Narita T, Desseyn J-L. Gel-forming mucin interactome drives mucus viscoelasticity. Adv Colloid Interface Sci. 2018;252:69–82. doi:10.1016/j.cis.2017.12.00529329667
  • Zanetta JP, Pons A, Richet C, et al. Quantitative gas chromatography/mass spectrometry determination of C-mannosylation of tryptophan residues in glycoproteins. Anal Biochem. 2004;329:199–206. doi:10.1016/j.ab.2004.02.03315158478
  • Chavan M, Lennarz W. The molecular basis of coupling of translocation and N-glycosylation. Trends Biochem Sci. 2006;31:17–20. doi:10.1016/j.tibs.2005.11.01016356726
  • Yan A, Lennarz WJ. Unraveling the mechanism of protein N-glycosylation. J Biol Chem. 2005;280:3121–3124. doi:10.1074/jbc.R40003620015590627
  • Yamashita K, Hara-Kuge S, Ohkura T. Intracellular lectins associated with N-linked glycoprotein traffic. Biochim Biophys Acta. 1999;1473:147–160. doi:10.1016/s0304-4165(99)00175-010580135
  • Brockhausen I. Pathways of O-glycan biosynthesis in cancer cells. Biochim Biophys Acta. 1999;1473:67–95. doi:10.1016/s0304-4165(99)00170-110580130
  • Silverman HS, Sutton-Smith M, McDermott K, et al. The contribution of tandem repeat number to the O-glycosylation of mucins. Glycobiology. 2003;13:265–277. doi:10.1093/glycob/cwg02812626424
  • van der Post S, Subramani DB, Bäckström M, et al. Site-specific O-glycosylation on the MUC2 mucin protein inhibits cleavage by the Porphyromonas gingivalis secreted cysteine protease (RgpB). J Biol Chem. 2013;288:14636–14646. doi:10.1074/jbc.M113.45947923546879
  • Javitt G, Calvo MLG, Albert L, et al. Intestinal gel-forming mucins polymerize by disulfide-mediated dimerization of D3 domains. J Mol Biol. 2019;431:3740–3752. doi:10.1016/j.jmb.2019.07.01831310764
  • Borgert A, Heimburg-Molinaro J, Song X, et al. Deciphering structural elements of mucin glycoprotein recognition. ACS Chem Biol. 2012;7:1031–1039. doi:10.1021/cb300076s22444368
  • Sehnal D, Rose AS, Koča J, Burley SK, Velankar S. Mol*: towards a common library and tools for web molecular graphics. Proceedings of the workshop on molecular graphics and visual analysis of molecular data. Brno, Czech Republic: Eurographics Association; 2018:29–33.
  • Davies HS, Singh P, Deckert-Gaudig T, et al. Secondary structure and glycosylation of mucus glycoproteins by Raman spectroscopies. Anal Chem. 2016;88:11609–11615. doi:10.1021/acs.analchem.6b0309527791356
  • Wagner CE, Turner BS, Rubinstein M, McKinley GH, Ribbeck K. A rheological study of the association and dynamics of MUC5AC gels. Biomacromolecules. 2017;18:3654–3664. doi:10.1021/acs.biomac.7b0080928903557
  • Cao X, Bansil R, Bhaskar KR, et al. pH-dependent conformational change of gastric mucin leads to sol-gel transition. Biophys J. 1999;76:1250–1258. doi:10.1016/s0006-3495(99)77288-710049309
  • Georgiades P, Pudney PD, Thornton DJ, Waigh TA. Particle tracking microrheology of purified gastrointestinal mucins. Biopolymers. 2014;101:366–377. doi:10.1002/bip.2237223955640
  • Thim L, Madsen F, Poulsen SS. Effect of trefoil factors on the viscoelastic properties of mucus gels. Eur J Clin Invest. 2002;32:519–527. doi:10.1046/j.1365-2362.2002.01014.x12153553
  • Bell SL, Khatri IA, Xu G, Forstner JF. Evidence that a peptide corresponding to the rat Muc2 C-terminus undergoes disulphide-mediated dimerization. Eur J Biochem. 1998;253:123–131. doi:10.1046/j.1432-1327.1998.2530123.x9578469