85
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Role of Olaparib in the Management of Metastatic Castration-Resistant Prostate Cancer: A Japanese Clinician’s Perspective

, ORCID Icon, &
Pages 2389-2397 | Published online: 27 Nov 2023

References

  • Huggins C. Prostatic cancer treated by orchiectomy: the five year results. J Am Med Assoc. 1946;131(7):576–581. doi:10.1001/jama.1946.02870240008003
  • Ryan CJ, Tindall DJ. Androgen receptor rediscovered: the new biology and targeting the androgen receptor therapeutically. J Clin Oncol. 2011;29(27):3651–3658. doi:10.1200/JCO.2011.35.2005
  • Galletti G, Leach BI, Lam L, Tagawa ST. Mechanisms of resistance to systemic therapy in metastatic castration-resistant prostate cancer. Cancer Treat Rev. 2017;57:16–27. doi:10.1016/j.ctrv.2017.04.008
  • Abeshouse A, Ahn J, Akbani R, et al. The molecular taxonomy of primary prostate cancer. Cell. 2015;163(4):1011–1025. doi:10.1016/j.cell.2015.10.025
  • Robinson D, Van Allen EM, Wu YM, et al. Integrative clinical genomics of advanced prostate cancer. Cell. 2015;161(5):1215–1228. doi:10.1016/j.cell.2015.05.001
  • Grasso CS, Wu YM, Robinson DR, et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature. 2012;487(7406):239–243. doi:10.1038/nature11125
  • Mateo J, Carreira S, Sandhu S, et al. DNA-repair defects and olaparib in metastatic prostate cancer. N Engl J Med. 2015;373(18):1697–1708. doi:10.1056/NEJMoa1506859
  • Mateo J, Cheng HH, Beltran H, et al. Clinical outcome of prostate cancer patients with germline DNA repair mutations: retrospective analysis from an international study. Eur Urol. 2018;73(5):687–693. doi:10.1016/j.eururo.2018.01.010
  • Hussain M, Mateo J, Fizazi K, et al. Survival with olaparib in metastatic castration-resistant prostate cancer. N Engl J Med. 2020;383(24):2345–2357. doi:10.1056/NEJMoa2022485
  • de Bono J, Mateo J, Fizazi K, et al. Olaparib for metastatic castration-resistant prostate cancer. N Engl J Med. 2020;382(22):2091–2102. doi:10.1056/NEJMoa1911440
  • Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–249. doi:10.3322/caac.21660
  • Wang L, Lu B, He M, Wang Y, Wang Z, Du L. Prostate cancer incidence and mortality: global status and temporal trends in 89 countries from 2000 to 2019. Front Public Heal. 2022;10:176.
  • López-Plaza B, Bermejo LM, Santurino C, Cavero-Redondo I, Álvarez-Bueno C, Gómez-Candela C. Milk and dairy product consumption and prostate cancer risk and mortality: an overview of systematic reviews and meta-analyses. Adv Nutr. 2019;10(suppl_2):S212–S223. doi:10.1093/advances/nmz014
  • Aune D, Navarro Rosenblatt DA, Chan DSM, et al. Dairy products, calcium, and prostate cancer risk: a systematic review and meta-analysis of cohort studies. Am J Clin Nutr. 2015;101(1):87–117. doi:10.3945/ajcn.113.067157
  • Mikami K, Ozasa K, Miki T, et al. Dairy products and the risk of developing prostate cancer: a large-scale cohort study (JACC Study) in Japan. Cancer Med. 2021;10(20):7298–7307. doi:10.1002/cam4.4233
  • Cooper CS, Eeles R, Wedge DC, et al. Analysis of the genetic phylogeny of multifocal prostate cancer identifies multiple independent clonal expansions in neoplastic and morphologically normal prostate tissue. Nat Genet. 2015;47(4):367–372. doi:10.1038/ng.3221
  • Boutros PC, Fraser M, Harding NJ, et al. Spatial genomic heterogeneity within localized, multifocal prostate cancer. Nat Genet. 2015;47(7):736–745. doi:10.1038/ng.3315
  • Fraser M, Sabelnykova VY, Yamaguchi TN, et al. Genomic hallmarks of localized, non-indolent prostate cancer. Nature. 2017;541(7637):359–364. doi:10.1038/nature20788
  • Ku SY, Gleave ME, Beltran H. Towards precision oncology in advanced prostate cancer. Nat Rev Urol. 2019;16(11):645–654. doi:10.1038/s41585-019-0237-8
  • Zhang W, van Gent DC, Incrocci L, van Weerden WM, Nonnekens J. Role of the DNA damage response in prostate cancer formation, progression and treatment. Prostate Cancer Prostatic Dis. 2019;23(1):24–37. doi:10.1038/s41391-019-0153-2
  • Lozano R, Castro E, Aragón IM, et al. Genetic aberrations in DNA repair pathways: a cornerstone of precision oncology in prostate cancer. Br J Cancer. 2021;124(3):552–563. doi:10.1038/s41416-020-01114-x
  • Momozawa Y, Iwasaki Y, Parsons MT, et al. Germline pathogenic variants of 11 breast cancer genes in 7051 Japanese patients and 11,241 controls. Nat Commun. 2018;9(1):4083. doi:10.1038/s41467-018-06581-8
  • Enomoto T, Aoki D, Hattori K, et al. The first Japanese nationwide multicenter study of BRCA mutation testing in ovarian cancer: cHARacterizing the cross-sectionaL approach to Ovarian cancer geneTic TEsting of BRCA (Charlotte). Int J Gynecol Cancer. 2019;29(6):1043LP.
  • Momozawa Y, Iwasaki Y, Hirata M, et al. Germline pathogenic variants in 7636 Japanese patients with prostate cancer and 12 366 controls. JNCI J Natl Cancer Inst. 2020;112(4):369–376. doi:10.1093/jnci/djz124
  • Oh M, Alkhushaym N, Fallatah S, et al. The association of BRCA1 and BRCA2 mutations with prostate cancer risk, frequency, and mortality: a meta-analysis. Prostate. 2019;79(8):880–895. doi:10.1002/pros.23795
  • Nyberg T, Frost D, Barrowdale D, et al. Prostate cancer risks for male BRCA1 and BRCA2 Mutation carriers: a prospective cohort study. Eur Urol. 2020;77(1):24–35. doi:10.1016/j.eururo.2019.08.025
  • Momozawa Y, Sasai R, Usui Y, et al. Expansion of cancer risk profile for BRCA1 and BRCA2 pathogenic variants. JAMA Oncol. 2022;8:871. doi:10.1001/jamaoncol.2022.0476
  • Mateo J, Boysen G, Barbieri CE, et al. DNA repair in prostate cancer: biology and clinical implications. Eur Urol. 2017;71(3):417–425. doi:10.1016/j.eururo.2016.08.037
  • Mateo J, Porta N, Bianchini D, et al. Olaparib in patients with metastatic castration-resistant prostate cancer with DNA repair gene aberrations (TOPARP-B): a multicentre, open-label, randomised, phase 2 trial. Lancet Oncol. 2020;21(1):162–174. doi:10.1016/S1470-2045(19)30684-9
  • Abida W, Bryce AH, Vogelzang NJ, et al. Preliminary results from TRITON2: a Phase II study of rucaparib in patients (pts) with metastatic castration-resistant prostate cancer (mCRPC) associated with homologous recombination repair (HRR) gene alterations. Ann Oncol. 2018;29:viii272. doi:10.1093/annonc/mdy284.002
  • Smith MR, Scher HI, Sandhu S, et al. Niraparib in patients with metastatic castration-resistant prostate cancer and DNA repair gene defects (GALAHAD): a multicentre, open-label, phase 2 trial. Lancet Oncol. 2022;23(3):362–373. doi:10.1016/S1470-2045(21)00757-9
  • Chi KN, Rathkopf DE, Smith MR, et al. Phase 3 MAGNITUDE study: first results of niraparib (NIRA) with Abiraterone acetate and prednisone (AAP) as first-line therapy in patients (pts) with metastatic castration-resistant prostate cancer (mCRPC) with and without homologous recombination repair (HRR) gene alterations. Int J Med. 2022;40(6_suppl):12.
  • O’Connor MJ. Targeting the DNA damage response in cancer. Mol Cell. 2015;60(4):547–560. doi:10.1016/j.molcel.2015.10.040
  • Kalev P, Simicek M, Vazquez I, et al. Loss of PPP2R2A inhibits homologous recombination DNA repair and predicts tumor sensitivity to PARP inhibition. Cancer Res. 2012;72(24):6414–6424. doi:10.1158/0008-5472.CAN-12-1667
  • FDA. LYNPARZA (olaparib) prescribing information; 2020. Available from: www.accessdata.fda.gov/drugsatfda_docs/label/2020/208558s014lbl.pdf. Accessed August 3, 2022.
  • PMDA. LYNPARZA (olaparib) summary of product characteristics; 2020. Available from https://www.pmda.go.jp/files/000242574.pdf. Accessed August 3, 2022.
  • EMA. LYNPARZA (olaparib) summary of product characteristics; 2020. Available from: www.ema.europa.eu/en/documents/product-information/lynparza-epar-product-information_en.pdf. Accessed August 3, 2022.
  • Thiery-Vuillemin A, de Bono J, Hussain M, et al. Pain and health-related quality of life with olaparib versus physician’s choice of next-generation hormonal drug in patients with metastatic castration-resistant prostate cancer with homologous recombination repair gene alterations (PROfound): an open-lab. Lancet Oncol. 2022;23(3):393–405. doi:10.1016/S1470-2045(22)00017-1
  • Matsubara N, Nishimura K, Kawakami S, et al. Olaparib in patients with mCRPC with homologous recombination repair gene alterations: pROfound Asian subset analysis. Jpn J Clin Oncol. 2022;52(5):441–448. doi:10.1093/jjco/hyac015
  • Abida W, Patnaik A, Campbell D, et al. Rucaparib in men with metastatic castration-resistant prostate cancer harboring a BRCA1 or BRCA2 gene alteration. J Clin Oncol. 2020;38(32):3763–3772. doi:10.1200/JCO.20.01035
  • Giri VN, Hartman R, Pritzlaff M, Horton C, Keith SW. Germline variant spectrum among African American men undergoing prostate cancer germline testing: need for equity in genetic testing. JCO Precis Oncol. 2022;1(6):e2200234. doi:10.1200/PO.22.00234
  • Abida W, Armenia J, Gopalan A, et al. Prospective genomic profiling of prostate cancer across disease states reveals germline and somatic alterations that may affect clinical decision making. J Med. 2017;1(1):1–16.
  • Kimura H, Mizuno K, Narita S, et al. Analysis of genetic rare variants in Japanese advanced prostate cancer patients. 79th Annu Meet Japanese Cancer Assoc. 2020:PJ7.
  • Li H, LaDuca H, Pesaran T, et al. Classification of variants of uncertain significance in BRCA1 and BRCA2 using personal and family history of cancer from individuals in a large hereditary cancer multigene panel testing cohort. Genet Med. 2020;22(4):701–708. doi:10.1038/s41436-019-0729-1
  • Jimenez-Sainz J, Jensen RB. Imprecise medicine: BRCA2 Variants of Uncertain Significance (VUS), the challenges and benefits to integrate a functional assay workflow with clinical decision rules. Genes. 2021;12:5. doi:10.3390/genes12050780
  • Uemura H, Oya M, Kamoto T, et al. A domestic multicenter observational study on the prevalence of homologous recombination repair-related gene mutations and prognosis in patients with metastatic castration-resistant prostate cancer in the real world: zENSHINStudy. 109th Annu Meet Japanese Urol Assoc. 2021:LB02–04.
  • de Bono JS, Fizazi K, Saad F, et al. Central, prospective detection of homologous recombination repair gene mutations (HRRm) in tumour tissue from >4000 men with metastatic castration-resistant prostate cancer (mCRPC) screened for the PROfound study. Ann Oncol. 2019;30:v328–v329. doi:10.1093/annonc/mdz248.004
  • Mahal BA, Alshalalfa M, Kensler KH, et al. Racial differences in genomic profiling of prostate cancer. N Engl J Med. 2020;383(11):1083–1085. doi:10.1056/NEJMc2000069
  • Wyatt AW, Annala M, Aggarwal R, et al. Concordance of circulating tumor DNA and matched metastatic tissue biopsy in prostate cancer. JNCI J Natl Cancer Inst. 2017;109(12):djx118. doi:10.1093/jnci/djx118
  • Tukachinsky H, Madison RW, Chung JH, et al. Genomic analysis of circulating tumor DNA in 3334 patients with advanced prostate cancer identifies targetable BRCA alterations and AR resistance mechanisms. Clin Cancer Res. 2021;27(11):3094–3105. doi:10.1158/1078-0432.CCR-20-4805
  • Haffner MC, Zwart W, Roudier MP, et al. Genomic and phenotypic heterogeneity in prostate cancer. Nat Rev Urol. 2021;18(2):79–92. doi:10.1038/s41585-020-00400-w
  • Mizuno K, Sumiyoshi T, Okegawa T, et al. Clinical impact of detecting low-frequency variants in cell-free DNA on treatment of castration-resistant prostate cancer. Clin Cancer Res. 2021;27(22):6164–6173. doi:10.1158/1078-0432.CCR-21-2328
  • Matsubara N, Kato T, Fujisawa T, et al. Landscape of genomic alterations of circulating tumor DNA in advanced genitourinary cancer patients: SCRUM-Japan MONSTAR SCREEN Project. J Clin Oncol. 2021;39(6_suppl):152. doi:10.1200/JCO.2021.39.6_suppl.152
  • Abbosh C, Swanton C, Birkbak NJ. Clonal haematopoiesis: a source of biological noise in cell-free DNA analyses. Ann Oncol off J Eur Soc Med Oncol. 2019;30(3):358–359. doi:10.1093/annonc/mdy552
  • Jensen K, Konnick EQ, Schweizer MT, et al. Association of clonal hematopoiesis in DNA repair genes with prostate cancer plasma cell-free DNA testing interference. JAMA Oncol. 2021;7(1):107–110. doi:10.1001/jamaoncol.2020.5161
  • FDA. List of Cleared and Approved Companion Diagnostic Devices; 2022, Available from https://www.fda.gov/media/119249/download. Accessed August 3, 2022.
  • Saad F, Armstrong AJ, Thiery-Vuillemin A, et al. PROpel: Phase III trial of olaparib (ola) and Abiraterone (abi) versus placebo (pbo) and abi as first-line (1L) therapy for patients (pts) with metastatic castration-resistant prostate cancer (mCRPC). J Med. 2022;40(6_suppl):11.
  • Agarwal N, Azad A, Fizazi K, et al. Talapro-3: a phase 3, double-blind, randomized study of enzalutamide (ENZA) plus talazoparib (TALA) versus placebo plus enza in patients with DDR gene mutated metastatic castration-sensitive prostate cancer (mCSPC). J Clin Oncol. 2022;40(6_suppl):TPS221. doi:10.1200/JCO.2022.40.6_suppl.TPS221
  • Rathkopf DE, Chi KN, Olmos D, et al. AMPLITUDE: a study of niraparib in combination with Abiraterone acetate plus prednisone (AAP) versus AAP for the treatment of patients with deleterious germline or somatic homologous recombination repair (HRR) gene-altered metastatic castration-sensitive. J Clin Oncol. 2021;39(6_suppl):TPS176. doi:10.1200/JCO.2021.39.6_suppl.TPS176
  • Chatterjee P, Schweizer MT, Lucas JM, et al. Supraphysiological androgens suppress prostate cancer growth through androgen receptor–mediated DNA damage. J Clin Invest. 2019;129(10):4245–4260. doi:10.1172/JCI127613
  • Cheng HH, Pritchard CC, Boyd T, Nelson PS, Montgomery B. Biallelic inactivation of BRCA2 in platinum-sensitive metastatic castration-resistant prostate cancer. Eur Urol. 2016;69(6):992–995. doi:10.1016/j.eururo.2015.11.022
  • van der Doelen MJ, Isaacsson Velho P, Slootbeek PHJ, et al. Impact of DNA damage repair defects on response to radium-223 and overall survival in metastatic castration-resistant prostate cancer. Eur J Cancer. 2020;136:16–24. doi:10.1016/j.ejca.2020.05.001
  • Isaacsson Velho P, Qazi F, Hassan S, et al. Efficacy of radium-223 in bone-metastatic castration-resistant prostate cancer with and without homologous repair gene defects. Eur Urol. 2019;76(2):170–176. doi:10.1016/j.eururo.2018.09.040