96
Views
3
CrossRef citations to date
0
Altmetric
Review

Emerging Roles of N6-Methyladenosine Demethylases and Its Interaction with Environmental Toxicants in Digestive System Cancers

, , , , , , ORCID Icon & show all
Pages 7101-7114 | Published online: 09 Sep 2021

References

  • MattiuzziC, LippiG. Current cancer epidemiology. J Epidemiol Glob Health. 2019;9(4):217–222. doi:10.2991/jegh.k.191008.00131854162
  • WuC, LiM, MengH, et al. Analysis of status and countermeasures of cancer incidence and mortality in China. Sci China Life Sci. 2019;62(5):640–647. doi:10.1007/s11427-018-9461-530900169
  • SungH, FerlayJ, SiegelRL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–249. doi:10.3322/caac.2166033538338
  • FengRM, ZongYN, CaoSM, XuRH. Current cancer situation in China: good or bad news from the 2018 global cancer statistics?Cancer Commun. 2019;39(1):22. doi:10.1186/s40880-019-0368-6
  • CalatiR, FangF, MostofskyE, et al. Cancer and suicidal ideation and behaviours: protocol for a systematic review and meta-analysis. BMJ Open. 2018;8(8):e020463. doi:10.1136/bmjopen-2017-020463
  • WooHH, ChambersSK. Human ALKBH3-induced m(1)A demethylation increases the CSF-1 mRNA stability in breast and ovarian cancer cells. Biochim Biophys Acta Gene Regul Mech. 2019;1862(1):35–46. doi:10.1016/j.bbagrm.2018.10.00830342176
  • BoccalettoP, MachnickaMA, PurtaE, et al. MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Res. 2018;46(D1):D303–D307. doi:10.1093/nar/gkx103029106616
  • LiuL, WangY, WuJ, LiuJ, QinZ, FanH. N(6)-methyladenosine: a potential breakthrough for human cancer. Mol Ther Nucleic Acids. 2020;19:804–813. doi:10.1016/j.omtn.2019.12.01331958696
  • LiY, WuK, QuanW, et al. The dynamics of FTO binding and demethylation from the m(6)A motifs. RNA Biol. 2019;16(9):1179–1189. doi:10.1080/15476286.2019.162112031149892
  • YangYY, YuK, LiL, HuangM, WangY. Proteome-wide interrogation of small GTPases regulated by N(6)-methyladenosine modulators. Anal Chem. 2020;92(14):10145–10152. doi:10.1021/acs.analchem.0c0220332567849
  • LeonettiAM, ChuMY, RamnaraignFO, HolmS, WaltersBJ. An emerging role of m6A in memory: a case for translational priming. Int J Mol Sci. 2020;21(20):7447. doi:10.3390/ijms21207447
  • WangTY, KongS, TaoM, JuSQ. The potential role of RNA N6-methyladenosine in cancer progression. Mol Cancer. 2020;19(1):88. doi:10.1186/s12943-020-01204-732398132
  • FuY, JiaG, PangX, et al. FTO-mediated formation of N6-hydroxymethyladenosine and N6-formyladenosine in mammalian RNA. Nat Commun. 2013;4(1):1798. doi:10.1038/ncomms282223653210
  • GuanKL, LiuX, LiJH, et al. Expression status and prognostic value of M6A-associated genes in gastric cancer. J Cancer. 2020;11(10):3027–3040. doi:10.7150/jca.4086632226518
  • NiuY, LinZ, WanA, et al. RNA N6-methyladenosine demethylase FTO promotes breast tumor progression through inhibiting BNIP3. Mol Cancer. 2019;18(1):46. doi:10.1186/s12943-019-1004-430922314
  • LiT, HuPS, ZuoZ, et al. METTL3 facilitates tumor progression via an m(6) A-IGF2BP2-dependent mechanism in colorectal carcinoma. Mol Cancer. 2019;18(1):112. doi:10.1186/s12943-019-1038-731230592
  • ZhaoW, QiXQ, LiuLN, MaSQ, LiuJW, WuJ. Epigenetic regulation of m(6)A modifications in human cancer. Mol Ther Nucleic Acids. 2020;19:405–412. doi:10.1016/j.omtn.2019.11.02231887551
  • LiN, ZhanXQ. Identification of pathology-specific regulators of m(6)A RNA modification to optimize lung cancer management in the context of predictive, preventive, and personalized medicine. EPMA J. 2020;11(3):485–504. doi:10.1007/s13167-020-00220-332849929
  • PuXW, GuZW, GuZR. ALKBH5 regulates IGF1R expression to promote the proliferation and tumorigenicity of endometrial cancer. J Cancer. 2020;11(19):5612–5622. doi:10.7150/jca.4609732913456
  • LoboJ, Barros-SilvaD, HenriqueR, JerónimoC. The emerging role of epitranscriptomics in cancer: focus on urological tumors. Genes. 2018;9(11):552. doi:10.3390/genes9110552
  • WangJ, WangJ, GuQ, et al. The biological function of m6A demethylase ALKBH5 and its role in human disease. Cancer Cell Int. 2020;20(1):347. doi:10.1186/s12935-020-01450-132742194
  • MachlowskaJ, BajJ, SitarzM, MaciejewskiR, SitarzR. Gastric cancer: epidemiology, risk factors, classification, genomic characteristics and treatment strategies. Int J Mol Sci. 2020;21(11):4012. doi:10.3390/ijms21114012
  • YangJD, HainautP, GoresGJ, AmadouA, PlymothA, RobertsLR. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol. 2019;16(10):589–604. doi:10.1038/s41575-019-0186-y31439937
  • LiD, ZhuX, LiY, ZengX. Novel insights into the roles of RNA N(6)-methyladenosine modification in regulating gene expression during environmental exposures. Chemosphere. 2020;261:127757. doi:10.1016/j.chemosphere.2020.12775732726721
  • FawcettKA, BarrosoI. The genetics of obesity: FTO leads the way. Trends Genet. 2010;26(6):266–274. doi:10.1016/j.tig.2010.02.00620381893
  • QinY, LiL, LuoE, et al. Role of m6A RNA methylation in cardiovascular disease (review). Int J Mol Med. 2020;46(6):1958–1972. doi:10.3892/ijmm.2020.474633125109
  • ChurchC, MoirL, McMurrayF, et al. Overexpression of Fto leads to increased food intake and results in obesity. Nat Genet. 2010;42(12):1086–1092. doi:10.1038/ng.71321076408
  • HuangX, ZhaoJ, YangM, LiM, ZhengJ. Association between FTO gene polymorphism (rs9939609 T/A) and cancer risk: a meta-analysis. Eur J Cancer Care. 2017;26(5):e12464. doi:10.1111/ecc.12464
  • LiG, ChenQ, WangL, KeD, YuanZ. Association between FTO gene polymorphism and cancer risk: evidence from 16,277 cases and 31,153 controls. Tumour Biol. 2012;33(4):1237–1243. doi:10.1007/s13277-012-0372-922396042
  • ZhaoJ, HuangX, YangM, LiM, ZhengJ. Association between the FTOrs8050136 polymorphism and cancer risk: a meta-analysis. Fam Cancer. 2016;15(1):145–153. doi:10.1007/s10689-015-9843-726427991
  • JiaG, FuY, ZhaoX, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol. 2011;7(12):885–887. doi:10.1038/nchembio.68722002720
  • WeiJ, LiuF, LuZ, et al. Differential m(6)A, m(6)Am, and m(1)A demethylation mediated by FTO in the cell nucleus and cytoplasm. Mol Cell. 2018;71(6):973–985e5. doi:10.1016/j.molcel.2018.08.01130197295
  • LiZ, WengH, SuR, et al. FTO plays an oncogenic role in acute myeloid leukemia as a N(6)-methyladenosine RNA demethylase. Cancer Cell. 2017;31(1):127–141. doi:10.1016/j.ccell.2016.11.01728017614
  • XuX, ZhouE, ZhengJ, et al. Prognostic and predictive value of m6a “eraser” related gene signature in gastric cancer. Front Oncol. 2021;11:631803. doi:10.3389/fonc.2021.63180333718213
  • SilvaI, AlipioC, PintoR, MateusV. Potential anti-inflammatory effect of erythropoietin in non-clinical studies in vivo: a systematic review. Biomed Pharmacother. 2021;139:111558. doi:10.1016/j.biopha.2021.11155833894624
  • ZhangJ, PiaoHY, WangY, et al. To develop and validate the combination of RNA methylation regulators for the prognosis of patients with gastric cancer. Onco Targets Ther. 2020;13:10785–10795. doi:10.2147/OTT.S27623933122917
  • XuD, ShaoW, JiangY, WangX, LiuY, LiuX. FTO expression is associated with the occurrence of gastric cancer and prognosis. Oncol Rep. 2017;38(4):2285–2292. doi:10.3892/or.2017.590428849183
  • JingJJ, ZhaoX, LiH, SunLP, YuanY. Expression profiles and prognostic roles of m6A writers, erasers and readers in gastric cancer. Future Oncol. 2021;17(20):2605–2620. doi:10.2217/fon-2020-063033878934
  • SuY, HuangJ, HuJ. m(6)A RNA methylation regulators contribute to malignant progression and have clinical prognostic impact in gastric cancer. Front Oncol. 2019;9:1038. doi:10.3389/fonc.2019.0103831681576
  • YangZ, JiangX, ZhangZ, et al. HDAC3-dependent transcriptional repression of FOXA2 regulates FTO/m6A/MYC signaling to contribute to the development of gastric cancer. Cancer Gene Ther. 2021;28(1–2):141–155. doi:10.1038/s41417-020-0193-832655129
  • HeB, LiX, HuT, LianW, ZhangM. Construction of a lentiviral vector containing shRNA targeting ADAM17 and its role in attenuating endotoxemia in mice. Mol Med Rep. 2017;16(5):6013–6019. doi:10.3892/mmr.2017.730728849138
  • LiY, ZhengD, WangF, XuY, YuH, ZhangH. Expression of demethylase genes, FTO and ALKBH1, is associated with prognosis of gastric cancer. Dig Dis Sci. 2019;64(6):1503–1513. doi:10.1007/s10620-018-5452-230637548
  • Jing-NanPI, ZhangJ, WangXP, XiongJC, YuJ. Down -regulation of FTO in human gastric cancer and its effect on cell line MGC-803 function. Basic Clin Med. 2017;37:098–911.
  • GeL, ZhangN, ChenZ, et al. Level of N6-methyladenosine in peripheral blood RNA: a novel predictive biomarker for gastric cancer. Clin Chem. 2020;66(2):342–351. doi:10.1093/clinchem/hvz00432040577
  • RongZX, LiZ, HeJJ, et al. Downregulation of fat mass and obesity associated (FTO) promotes the progression of intrahepatic cholangiocarcinoma. Front Oncol. 2019;9:369. doi:10.3389/fonc.2019.0036931143705
  • LiuXM, LiuJY, XiaoW, et al. SIRT1 regulates N-6-methyladenosine RNA modification in hepatocarcinogenesis by inducing RANBP2-dependent FTO SUMOylation. Hepatology. 2020;72(6):2029–2050. doi:10.1002/hep.3122232154934
  • LiJ, ZhuLJ, ShiYH, LiuJN, LinL, ChenX. m6A demethylase FTO promotes hepatocellular carcinoma tumorigenesis via mediating PKM2 demethylation. Am J Transl Res. 2019;11(9):6084.31632576
  • YeZQ, WangSB, ChenWY, et al. Fat mass and obesity-associated protein promotes the tumorigenesis and development of liver cancer. Oncol Lett. 2020;20(2):1409–1417. doi:10.3892/ol.2020.1167332724383
  • MittenbuhlerMJ, SaedlerK, NolteH, et al. Hepatic FTO is dispensable for the regulation of metabolism but counteracts HCC development in vivo. Mol Metab. 2020;42:101085. doi:10.1016/j.molmet.2020.10108532956847
  • TsurutaN, TsuchihashiK, OhmuraH, et al. RNA N6-methyladenosine demethylase FTO regulates PD-L1 expression in colon cancer cells. Biochem Biophys Res Commun. 2020;530(1):235–239. doi:10.1016/j.bbrc.2020.06.15332828292
  • YueCF, ChenJR, LiZY, LiLS, ChenJG, GuoYM. microRNA-96 promotes occurrence and progression of colorectal cancer via regulation of the AMPK alpha 2-FTO-m6A/MYC axis. J Exp Clin Cancer Res. 2020;39(1):240. doi:10.1186/s13046-020-01731-733183350
  • ZhangQ, CaiY, KurbatovV, et al. Gene alterations of N6-methyladenosine (m(6)A) regulators in colorectal cancer: a TCGA Database Study. Biomed Res Int. 2020;2020:8826456. doi:10.1155/2020/882645633415160
  • LiuX, LiuL, DongZ, et al. Expression patterns and prognostic value of m(6) A-related genes in colorectal cancer. Am J Transl Res. 2019;11(7):3972–3991.31396313
  • RelierS, RipollJ, GuilloritH, et al. FTO-mediated cytoplasmic m(6)Am demethylation adjusts stem-like properties in colorectal cancer cell. Nat Commun. 2021;12(1):1716. doi:10.1038/s41467-021-21758-433741917
  • TangX, LiuS, ChenD, ZhaoZ, ZhouJ. The role of the fat mass and obesity-associated protein in the proliferation of pancreatic cancer cells. Oncol Lett. 2019;17(2):2473–2478. doi:10.3892/ol.2018.987330719115
  • ZhaoH, XuY, XieY, et al. m6A regulators is differently expressed and correlated with immune response of esophageal cancer. Front Cell Dev Biol. 2021;9:650023. doi:10.3389/fcell.2021.65002333748145
  • LiuSX, HuangM, ChenZQ, et al. FTO promotes cell proliferation and migration in esophageal squamous cell carcinoma through up-regulation of MMP13. Exp Cell Res. 2020;389(1):111894. doi:10.1016/j.yexcr.2020.11189432035950
  • ZhengG, Dahl JohnA, NiuY, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell. 2013;49(1):18–29. doi:10.1016/j.molcel.2012.10.01523177736
  • MoP, XieS, CaiW, et al. N(6)-methyladenosine (m(6)A) RNA methylation signature as a predictor of stomach adenocarcinoma outcomes and its association with immune checkpoint molecules. J Int Med Res. 2020;48(9):300060520951405. doi:10.1177/030006052095140532972288
  • ZhangJ, GuoS, PiaoHY, et al. ALKBH5 promotes invasion and metastasis of gastric cancer by decreasing methylation of the lncRNA NEAT1. J Physiol Biochem. 2019;75(3):379–389. doi:10.1007/s13105-019-00690-831290116
  • JiL, ChenS, GuL, ZhangX. Exploration of potential roles of m6A regulators in colorectal cancer prognosis. Front Oncol. 2020;10:768. doi:10.3389/fonc.2020.0076832500031
  • XuD, ShaoJ, SongH, WangJ. The YTH domain family of n6-methyladenosine “readers” in the diagnosis and prognosis of colonic adenocarcinoma. Biomed Res Int. 2020;2020:9502560. doi:10.1155/2020/950256032596399
  • LiuT, LiCY, JinLP, LiC, WangL. The prognostic value of m6A RNA methylation regulators in colon adenocarcinoma. Med Sci Monit. 2019;25:9435–9445. doi:10.12659/msm.92038131823961
  • YangP, WangQ, LiuA, ZhuJ, FengJ. ALKBH5 holds prognostic values and inhibits the metastasis of colon cancer. Pathol Oncol Res. 2020;26(3):1615–1623. doi:10.1007/s12253-019-00737-731506804
  • GuoT, LiuDF, PengSH, XuAM. ALKBH5 promotes colon cancer progression by decreasing methylation of the lncRNA NEAT1. Am J Transl Res. 2020;12(8):4542–4549.32913527
  • LiSS, ZhouCY, LiaoR, et al. ABO blood type, smoking status, other risk factors and prognosis of pancreatic ductal adenocarcinoma. Medicine. 2020;99(14):e19413. doi:10.1097/MD.000000000001941332243360
  • GengY, GuanR, HongW, et al. Identification of m6A-related genes and m6A RNA methylation regulators in pancreatic cancer and their association with survival. Ann Transl Med. 2020;8(6):387. doi:10.21037/atm.2020.03.9832355831
  • ChoSH, HaM, ChoYH, et al. ALKBH5 gene is a novel biomarker that predicts the prognosis of pancreatic cancer: a retrospective multicohort study. Ann Hepatobiliary Pancreat Surg. 2018;22(4):305–309. doi:10.14701/ahbps.2018.22.4.30530588520
  • TangB, YangY, KangM, et al. m(6)A demethylase ALKBH5 inhibits pancreatic cancer tumorigenesis by decreasing WIF-1 RNA methylation and mediating Wnt signaling. Mol Cancer. 2020;19(1):3. doi:10.1186/s12943-019-1128-631906946
  • GuoX, LiK, JiangW, et al. RNA demethylase ALKBH5 prevents pancreatic cancer progression by posttranscriptional activation of PER1 in an m6A-YTHDF2-dependent manner. Mol Cancer. 2020;19(1):91. doi:10.1186/s12943-020-01158-w32429928
  • HeY, HuH, WangY, et al. ALKBH5 inhibits pancreatic cancer motility by decreasing long non-coding RNA KCNK15-AS1 methylation. Cell Physiol Biochem. 2018;48(2):838–846. doi:10.1159/00049191530032148
  • TangR, ZhangY, LiangC, et al. The role of m6A-related genes in the prognosis and immune microenvironment of pancreatic adenocarcinoma. PeerJ. 2020;8:e9602. doi:10.7717/peerj.960233062408
  • XuF, ZhangZ, YuanM, et al. M6A regulatory genes play an important role in the prognosis, progression and immune microenvironment of pancreatic adenocarcinoma. Cancer Invest. 2021;39(1):39–54. doi:10.1080/07357907.2020.183457633176521
  • WangP, WangXT, ZhengL, ZhuangCB. Gene signatures and prognostic values of m6A regulators in hepatocellular carcinoma. Front Genet. 2020;11:540186. doi:10.3389/fgene.2020.54018633133142
  • ChenYH, ZhaoYC, ChenJR, et al. ALKBH5 suppresses malignancy of hepatocellular carcinoma via m(6) A-guided epigenetic inhibition of LYPD1. Mol Cancer. 2020;19(1):123. doi:10.1186/s12943-020-01239-w32772918
  • XuLC, PanJX, PanHD. Construction and validation of an m6A RNA methylation regulators-based prognostic signature for esophageal cancer. Cancer Manag Res. 2020;12:5385–5394. doi:10.2147/cmar.S25487032753956
  • XueJ, XiaoP, YuX, ZhangX. A positive feedback loop between AlkB homolog 5 and miR-193a-3p promotes growth and metastasis in esophageal squamous cell carcinoma. Hum Cell. 2021;34(2):502–514. doi:10.1007/s13577-020-00458-z33231844
  • NagakiY, MotoyamaS, YamaguchiT, et al. m(6) A demethylase ALKBH5 promotes proliferation of esophageal squamous cell carcinoma associated with poor prognosis. Genes Cells. 2020;25(8):547–561. doi:10.1111/gtc.1279232449584
  • RoundtreeIA, EvansME, PanT, HeC. Dynamic RNA modifications in gene expression regulation. Cell. 2017;169(7):1187–1200. doi:10.1016/j.cell.2017.05.04528622506
  • ChenZ, QiM, ShenB, et al. Transfer RNA demethylase ALKBH3 promotes cancer progression via induction of tRNA-derived small RNAs. Nucleic Acids Res. 2019;47(5):2533–2545. doi:10.1093/nar/gky125030541109
  • UedaY, OoshioI, FusamaeY, et al. AlkB homolog 3-mediated tRNA demethylation promotes protein synthesis in cancer cells. Sci Rep. 2017;7:42271. doi:10.1038/srep4227128205560
  • XieSH, LagergrenJ. Risk factors for oesophageal cancer. Best Pract Res Clin Gastroenterol. 2018;36–37:3–8. doi:10.1016/j.bpg.2018.11.008
  • KorcM, JeonCY, EdderkaouiM, et al. Tobacco and alcohol as risk factors for pancreatic cancer. Best Pract Res Clin Gastroenterol. 2017;31(5):529–536. doi:10.1016/j.bpg.2017.09.00129195672
  • HanB, ChuC, SuX, et al. N(6)-methyladenosine-dependent primary microRNA-126 processing activated PI3K-AKT-mTOR pathway drove the development of pulmonary fibrosis induced by nanoscale carbon black particles in rats. Nanotoxicology. 2020;14(1):1–20. doi:10.1080/17435390.2019.166104131502903
  • SunY, ZongC, LiuJ, et al. C-myc promotes miR-92a-2-5p transcription in rat ovarian granulosa cells after cadmium exposure. Toxicol Appl Pharmacol. 2021;421:115536. doi:10.1016/j.taap.2021.11553633865896
  • KupscoA, GonzalezG, BakerBH, et al. Associations of smoking and air pollution with peripheral blood RNA N(6)-methyladenosine in the Beijing truck driver air pollution study. Environ Int. 2020;144:106021. doi:10.1016/j.envint.2020.10602132791345
  • GuS, SunD, DaiH, ZhangZ. N(6)-methyladenosine mediates the cellular proliferation and apoptosis via microRNAs in arsenite-transformed cells. Toxicol Lett. 2018;292:1–11. doi:10.1016/j.toxlet.2018.04.01829680375
  • ChenH, ZhaoT, SunD, WuM, ZhangZ. Changes of RNA N(6)-methyladenosine in the hormesis effect induced by arsenite on human keratinocyte cells. Toxicol in Vitro. 2019;56:84–92. doi:10.1016/j.tiv.2019.01.01030654086
  • CayirA, BarrowTM, GuoL, ByunHM. Exposure to environmental toxicants reduces global N6-methyladenosine RNA methylation and alters expression of RNA methylation modulator genes. Environ Res. 2019;175:228–234. doi:10.1016/j.envres.2019.05.01131146095
  • TangJ, ZhengC, ZhengF, et al. Global N6-methyladenosine profiling of cobalt-exposed cortex and human neuroblastoma H4 cells presents epitranscriptomics alterations in neurodegenerative disease-associated genes. Environ Pollut. 2020;266(Pt2):115326. doi:10.1016/j.envpol.2020.11532632827984
  • ZhaoTX, WangJK, ShenLJ, et al. Increased m6A RNA modification is related to the inhibition of the Nrf2-mediated antioxidant response in di-(2-ethylhexyl) phthalate-induced prepubertal testicular injury. Environ Pollut. 2020;259:113911. doi:10.1016/j.envpol.2020.11391131923814
  • Cui YH, Yang S, WEi J, et al.Autophagy of the m6A mRNA demethylase FTO is impaired by low-level arsenic exposure to promote tumorigenesis. Nat Commun. 2021;12:2183. doi:10.1038/s41467-021-22469-6
  • ZhangJ, BaiR, LiM, et al. Excessive miR-25-3p maturation via N(6)-methyladenosine stimulated by cigarette smoke promotes pancreatic cancer progression. Nat Commun. 2019;10(1):1858. doi:10.1038/s41467-019-09712-x31015415
  • WuJ, GanZ, ZhuoR, ZhangL, WangT, ZhongX. Resveratrol attenuates aflatoxin B1-induced ROS formation and increase of m(6)A RNA methylation. Animals. 2020;10(4):677. doi:10.3390/ani10040677
  • SunL, LingY, JiangJ, et al. Differential mechanisms regarding triclosan vs. bisphenol A and fluorene-9-bisphenol induced zebrafish lipid-metabolism disorders by RNA-Seq. Chemosphere. 2020;251:126318. doi:10.1016/j.chemosphere.2020.12631832143076
  • WuS, ZhangL, DengJ, et al. A novel micropeptide encoded by Y-linked LINC00278 links cigarette smoking and AR signaling in male esophageal squamous cell carcinoma. Cancer Res. 2020;80(13):2790–2803. doi:10.1158/0008-5472.CAN-19-344032169859
  • HuangY, YanJ, LiQ, et al. Meclofenamic acid selectively inhibits FTO demethylation of m6A over ALKBH5. Nucleic Acids Res. 2015;43(1):373–384. doi:10.1093/nar/gku127625452335
  • FukumotoT, ZhuHR, NacarelliT, et al. N-6-methylation of adenosine of FZD10 mRNA contributes to PARP inhibitor resistance. Cancer Res. 2019;79(11):2812–2820. doi:10.1158/0008-5472.Can-18-359230967398