175
Views
3
CrossRef citations to date
0
Altmetric
Original Research

Intratumoral Injection of a Human Papillomavirus Therapeutic Vaccine-Induced Strong Anti-TC-1-Grafted Tumor Activity in Mice

, , , & ORCID Icon
Pages 7339-7354 | Published online: 21 Sep 2021

References

  • CrosbieEJ, EinsteinMH, FranceschiS, KitchenerHC. Human papillomavirus and cervical cancer. Lancet. 2013;382(9895):889–899. doi:10.1016/S0140-6736(13)60022-723618600
  • MonieA, HungCF, RodenR, WuTC. Cervarix: a vaccine for the prevention of HPV 16, 18-associated cervical cancer. Biologics. 2008;2(1):97–105.
  • ClarkKT, TrimbleCL. Current status of therapeutic HPV vaccines. Gynecol Oncol. 2020;156(2):503–510. doi:10.1016/j.ygyno.2019.12.01731870557
  • Hoppe-SeylerK, BosslerF, BraunJA, HerrmannAL, Hoppe-SeylerF. The HPV E6/E7 oncogenes: key factors for viral carcinogenesis and therapeutic targets. Trends Microbiol. 2018;26(2):158–168. doi:10.1016/j.tim.2017.07.00728823569
  • NayerehKG, KhademG. Preventive and therapeutic vaccines against human papillomaviruses associated cervical cancers. Iran J Basic Med Sci. 2012;15(1):585–601.23493151
  • YangY, CheY, ZhaoY, WangX. Prevention and treatment of cervical cancer by a single administration of human papillomavirus peptide vaccine with CpG oligodeoxynucleotides as an adjuvant in vivo. Int Immunopharmacol. 2019;69:279–288. doi:10.1016/j.intimp.2019.01.02430743204
  • CheY, YangY, SuoJ, AnY, WangX. Induction of systemic immune responses and reversion of immunosuppression in the tumor microenvironment by a therapeutic vaccine for cervical cancer. Cancer Immunol Immunother. 2020;69(12):2651–2664. doi:10.1007/s00262-020-02651-332607768
  • HammerichL, BhardwajN, KohrtHE, BrodyJD. In situ vaccination for the treatment of cancer. Immunotherapy. 2016;8(3):315–330. doi:10.2217/imt.15.12026860335
  • Burn AschnerC, PierceC, KnipeDM, HeroldBC. Vaccination route as a determinant of protective antibody responses against herpes simplex virus. Vaccines. 2020;8:2.
  • MarabelleA, TselikasL, de BaereT, HouotR. Intratumoral immunotherapy: using the tumor as the remedy. Ann Oncol. 2017;28(suppl_12):xii33–xii43. doi:10.1093/annonc/mdx68329253115
  • NewmanJH, ChessonCB, HerzogNL, et al. Intratumoral injection of the seasonal flu shot converts immunologically cold tumors to hot and serves as an immunotherapy for cancer. Proc Natl Acad Sci U S A. 2020;117(2):1119–1128. doi:10.1073/pnas.190402211631888983
  • LeeJM, LeeMH, GaronE, et al. Phase I Trial of Intratumoral Injection of CCL21 gene-modified dendritic cells in lung cancer elicits tumor-specific immune responses and CD8(+) T-cell Infiltration. Clin Cancer Res. 2017;23(16):4556–4568. doi:10.1158/1078-0432.CCR-16-282128468947
  • UrsuR, CarpentierA, MetellusP, et al. Intracerebral injection of CpG oligonucleotide for patients with de novo glioblastoma-A Phase II multicentric, randomised study. Eur J Cancer. 2017;73:30–37. doi:10.1016/j.ejca.2016.12.00328142059
  • LeeSY, KangTH, KnoffJ, et al. Intratumoral injection of therapeutic HPV vaccinia vaccine following cisplatin enhances HPV-specific antitumor effects. Cancer Immunol Immunother. 2013;62(7):1175–1185. doi:10.1007/s00262-013-1421-y23615841
  • NicholsAJ, GonzalezA, ClarkES, et al. Combined systemic and intratumoral administration of human papillomavirus vaccine to treat multiple cutaneous basaloid squamous cell carcinomas. JAMA Dermatol. 2018;154(8):927–930. doi:10.1001/jamadermatol.2018.174829971321
  • IshidaE, LeeJ, CampbellJS, et al. Intratumoral delivery of an HPV vaccine elicits a broad anti-tumor immune response that translates into a potent anti-tumor effect in a preclinical murine HPV model. Cancer Immunol Immunother. 2019;68(8):1273–1286. doi:10.1007/s00262-019-02357-131243491
  • PengS, TanM, LiYD, et al. PD-1 blockade synergizes with intratumoral vaccination of a therapeutic HPV protein vaccine and elicits regression of tumor in a preclinical model. Cancer Immunol Immunother. 2020;70:1049.33108473
  • YangMC, YangA, QiuJ, et al. Buccal injection of synthetic HPV long peptide vaccine induces local and systemic antigen-specific CD8+ T-cell immune responses and antitumor effects without adjuvant. Cell Biosci. 2016;6:17. doi:10.1186/s13578-016-0083-926949512
  • KawaradaY, GanssR, GarbiN, SacherT, ArnoldB, HammerlingGJ. NK- and CD8(+) T cell-mediated eradication of established tumors by peritumoral injection of CpG-containing oligodeoxynucleotides. J Immunol. 2001;167(9):5247–5253. doi:10.4049/jimmunol.167.9.524711673539
  • OnoT, HaradaM, YamadaA, et al. Antitumor effects of systemic and local immunization with a CTL-directed peptide in combination with a local injection of OK-432. Clin Cancer Res. 2006;12(4):1325–1332. doi:10.1158/1078-0432.CCR-05-129316489090
  • BriantiP, De FlammineisE, MercuriSR. Review of HPV-related diseases and cancers. New Microbiol. 2017;40(2):80–85.28368072
  • RomagnaniS. T-cell subsets (Th1 versus Th2). Ann Allergy Asthma Immunol. 2000;85(1):9–18. doi:10.1016/S1081-1206(10)62426-X10923599
  • BosR, ShermanLA. CD4+ T-cell help in the tumor milieu is required for recruitment and cytolytic function of CD8+ T lymphocytes. Cancer Res. 2010;70(21):8368–8377. doi:10.1158/0008-5472.CAN-10-132220940398
  • MarzoAL, KinnearBF, LakeRA, et al. Tumor-specific CD4+ T cells have a major “post-licensing” role in CTL mediated anti-tumor immunity. J Immunol. 2000;165(11):6047–6055. doi:10.4049/jimmunol.165.11.604711086036
  • WongSB, BosR, ShermanLA. Tumor-specific CD4+ T cells render the tumor environment permissive for infiltration by low-avidity CD8+ T cells. J Immunol. 2008;180(5):3122–3131. doi:10.4049/jimmunol.180.5.312218292535
  • MesafintZ, BerhaneY, DesalegnD. Health seeking behavior of patients diagnosed with cervical cancer in Addis Ababa, Ethiopia. Ethiop J Health Sci. 2018;28(2):111–116. doi:10.4314/ejhs.v28i2.229983508
  • MwakaAD, OkelloES, WabingaH, WalterFM. Symptomatic presentation with cervical cancer in Uganda: a qualitative study assessing the pathways to diagnosis in a low-income country. BMC Womens Health. 2015;15(1):15. doi:10.1186/s12905-015-0167-425783641
  • ButterfieldLH. Cancer vaccines. BMJ. 2015;350:h988. doi:10.1136/bmj.h98825904595
  • RomaniN, ThurnherM, IdoyagaJ, SteinmanRM, FlacherV. Targeting of antigens to skin dendritic cells: possibilities to enhance vaccine efficacy. Immunol Cell Biol. 2010;88(4):424–430. doi:10.1038/icb.2010.3920368713
  • NicolasJF, GuyB. Intradermal, epidermal and transcutaneous vaccination: from immunology to clinical practice. Expert Rev Vaccines. 2008;7(8):1201–1214. doi:10.1586/14760584.7.8.120118844594
  • HamidO, IsmailR, PuzanovI. Intratumoral Immunotherapy-Update 2019. Oncologist. 2020;25(3):e423–e438. doi:10.1634/theoncologist.2019-043832162802
  • KalathilSG, ThanavalaY. High immunosuppressive burden in cancer patients: a major hurdle for cancer immunotherapy. Cancer Immunol Immunother. 2016;65(7):813–819. doi:10.1007/s00262-016-1810-026910314
  • SicaA, MassarottiM. Myeloid suppressor cells in cancer and autoimmunity. J Autoimmun. 2017;85:117–125. doi:10.1016/j.jaut.2017.07.01028728794
  • TanakaA, SakaguchiS. Regulatory T cells in cancer immunotherapy. Cell Res. 2017;27(1):109–118. doi:10.1038/cr.2016.15127995907
  • BrownJM, RechtL, StroberS. The Promise of Targeting Macrophages in Cancer Therapy. Clin Cancer Res. 2017;23(13):3241–3250. doi:10.1158/1078-0432.CCR-16-312228341752
  • PollardJW. Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer. 2004;4(1):71–78. doi:10.1038/nrc125614708027
  • SpolskiR, LiP, LeonardWJ. Biology and regulation of IL-2: from molecular mechanisms to human therapy. Nat Rev Immunol. 2018;18(10):648–659. doi:10.1038/s41577-018-0046-y30089912
  • ZundlerS, NeurathMF. Interleukin-12: functional activities and implications for disease. Cytokine Growth Factor Rev. 2015;26(5):559–568. doi:10.1016/j.cytogfr.2015.07.00326182974
  • KearneyCJ, VervoortSJ, HoggSJ, et al. Tumor immune evasion arises through loss of TNF sensitivity. Sci Immunol. 2018;3:23. doi:10.1126/sciimmunol.aar3451
  • NagarshethN, WichaMS, ZouW. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol. 2017;17(9):559–572. doi:10.1038/nri.2017.4928555670
  • MarvelD, GabrilovichDI. Myeloid-derived suppressor cells in the tumor microenvironment: expect the unexpected. J Clin Invest. 2015;125(9):3356–3364. doi:10.1172/JCI8000526168215
  • SchmidtA, OberleN, KrammerPH. Molecular mechanisms of treg-mediated T cell suppression. Front Immunol. 2012;3:51. doi:10.3389/fimmu.2012.0005122566933
  • Sawa-WejkszaK, Kandefer-SzerszenM. Tumor-associated macrophages as target for antitumor therapy. Arch Immunol Ther Exp (Warsz). 2018;66(2):97–111. doi:10.1007/s00005-017-0480-828660349
  • ShengJ, ChenW, ZhuHJ. The immune suppressive function of transforming growth factor-beta (TGF-beta) in human diseases. Growth Factors. 2015;33(2):92–101. doi:10.3109/08977194.2015.101064525714613
  • TaylorA, VerhagenJ, BlaserK, AkdisM, AkdisCA. Mechanisms of immune suppression by interleukin-10 and transforming growth factor-beta: the role of T regulatory cells. Immunology. 2006;117(4):433–442. doi:10.1111/j.1365-2567.2006.02321.x16556256
  • LiJ, ByrneKT, YanF, et al. Tumor cell-intrinsic factors underlie heterogeneity of immune cell infiltration and response to immunotherapy. Immunity. 2018;49(1):178–193 e177. doi:10.1016/j.immuni.2018.06.00629958801
  • HassanRN, LuoH, JiangW. Effects of nicotinamide on cervical cancer-derived fibroblasts: evidence for therapeutic potential. Cancer Manag Res. 2020;12:1089–1100. doi:10.2147/CMAR.S22939532104089
  • LiH, WuX, ChengX. Advances in diagnosis and treatment of metastatic cervical cancer. J Gynecol Oncol. 2016;27(4):e43. doi:10.3802/jgo.2016.27.e4327171673
  • DavidsonB, GoldbergI, KopolovicJ, et al. MMP-2 and TIMP-2 expression correlates with poor prognosis in cervical carcinoma–a clinicopathologic study using immunohistochemistry and mRNA in situ hybridization. Gynecol Oncol. 1999;73(3):372–382. doi:10.1006/gyno.1999.538110366463
  • DavidsonB, GoldbergI, KopolovicJ, et al. Expression of matrix metalloproteinase-9 in squamous cell carcinoma of the uterine cervix-clinicopathologic study using immunohistochemistry and mRNA in situ hybridization. Gynecol Oncol. 1999;72(3):380–386. doi:10.1006/gyno.1998.528510053110
  • ErdoganB, WebbDJ. Cancer-associated fibroblasts modulate growth factor signaling and extracellular matrix remodeling to regulate tumor metastasis. Biochem Soc Trans. 2017;45(1):229–236. doi:10.1042/BST2016038728202677
  • TomaoF, PapaA, RossiL, et al. Angiogenesis and antiangiogenic agents in cervical cancer. Onco Targets Ther. 2014;7:2237–2248. doi:10.2147/OTT.S6828625506227
  • Lopez-OcejoO, Viloria-PetitA, Bequet-RomeroM, MukhopadhyayD, RakJ, KerbelRS. Oncogenes and tumor angiogenesis: the HPV-16 E6 oncoprotein activates the vascular endothelial growth factor (VEGF) gene promoter in a p53 independent manner. Oncogene. 2000;19(40):4611–4620. doi:10.1038/sj.onc.120381711030150
  • FujimotoJ, ToyokiH, SatoE, SakaguchiH, TamayaT. Clinical implication of expression of vascular endothelial growth factor-C in metastatic lymph nodes of uterine cervical cancers. Br J Cancer. 2004;91(3):466–469. doi:10.1038/sj.bjc.660196315226772
  • ChoiCH, SongSY, ChoiJJ, et al. Prognostic significance of VEGF expression in patients with bulky cervical carcinoma undergoing neoadjuvant chemotherapy. BMC Cancer. 2008;8:295. doi:10.1186/1471-2407-8-29518847499
  • RandallLM, MonkBJ, DarcyKM, et al. Markers of angiogenesis in high-risk, early-stage cervical cancer: a Gynecologic Oncology Group study. Gynecol Oncol. 2009;112(3):583–589. doi:10.1016/j.ygyno.2008.11.01319110305