234
Views
14
CrossRef citations to date
0
Altmetric
Original Research

HNRNPC Promotes Proliferation, Metastasis and Predicts Prognosis in Prostate Cancer

, ORCID Icon, , , &
Pages 7263-7276 | Published online: 21 Sep 2021

References

  • SiegelRL, MillerKD, FuchsHE, JemalA. Cancer statistics, 2021. CA Cancer J Clin. 2021;71(1):7–33.33433946
  • TeoMY, RathkopfDE, KantoffP. Treatment of advanced prostate cancer. Annu Rev Med. 2019;70:479–499.30691365
  • DaviesA, ConteducaV, ZoubeidiA, BeltranH. Biological evolution of castration-resistant prostate cancer. Eur Urol Focus. 2019;5(2):147–154.30772358
  • FurlanisE, ScheiffeleP. Regulation of neuronal differentiation, function, and plasticity by alternative splicing. Annu Rev Cell Dev Biol. 2018;34:451–469.30028642
  • ParkE, PanZ, ZhangZ, LinL, XingY. The expanding landscape of alternative splicing variation in human populations. Am J Hum Genet. 2018;102(1):11–26.29304370
  • UrbanskiLM, LeclairN, AnczukówO. Alternative-splicing defects in cancer: splicing regulators and their downstream targets, guiding the way to novel cancer therapeutics. Wiley Interdiscip Rev RNA. 2018;9(4):e1476.29693319
  • Martinez-MontielN, Rosas-MurrietaNH, Anaya RuizM, Monjaraz-GuzmanE, Martinez-ContrerasR. Alternative splicing as a target for cancer treatment. Int J Mol Sci. 2018;19:2.
  • GeuensT, BouhyD, TimmermanV. The hnRNP family: insights into their role in health and disease. Hum Genet. 2016;135(8):851–867.27215579
  • HanSP, TangYH, SmithR. Functional diversity of the hnRNPs: past, present and perspectives. Biochem J. 2010;430(3):379–392.20795951
  • ChaudhuryA, ChanderP, HowePH. Heterogeneous nuclear ribonucleoproteins (hnRNPs) in cellular processes: focus on hnRNP E1’s multifunctional regulatory roles. RNA. 2010;16(8):1449–1462.20584894
  • ChoiYD, GrabowskiPJ, SharpPA, DreyfussG. Heterogeneous nuclear ribonucleoproteins: role in RNA splicing. Science. 1986;231(4745):1534–1539.3952495
  • MerrillBM, BarnettSF, LeStourgeonWM, WilliamsKR. Primary structure differences between proteins C1 and C2 of HeLa 40S nuclear ribonucleoprotein particles. Nucleic Acids Res. 1989;17(21):8441–8449.2587210
  • WangLC, ChenSH, ShenXL, et al. M6A RNA methylation regulator HNRNPC contributes to tumorigenesis and predicts prognosis in glioblastoma multiforme. Front Oncol. 2020;10:536875.33134160
  • HuangGZ, WuQQ, ZhengZN, et al. M6A-related bioinformatics analysis reveals that HNRNPC facilitates progression of OSCC via EMT. Aging. 2020;12(12):11667–11684.32526707
  • WuY, ZhaoW, LiuY, et al. Function of HNRNPC in breast cancer cells by controlling the dsRNA-induced interferon response. EMBO J. 2018;37:23.
  • FischlH, NeveJ, WangZ, et al. hnRNPC regulates cancer-specific alternative cleavage and polyadenylation profiles. Nucleic Acids Res. 2019;47(14):7580–7591.31147722
  • ParkYM, HwangSJ, MasudaK, et al. Heterogeneous nuclear ribonucleoprotein C1/C2 controls the metastatic potential of glioblastoma by regulating PDCD4. Mol Cell Biol. 2012;32(20):4237–4244.22907752
  • ShettyS. Regulation of urokinase receptor mRNA stability by hnRNP C in lung epithelial cells. Mol Cell Biochem. 2005;272(1–2):107–118.16010978
  • MengZ, JacksonNL, ChoiH, KingPH, EmanuelPD, BlumeSW. Alterations in RNA-binding activities of IRES-regulatory proteins as a mechanism for physiological variability and pathological dysregulation of IGF-IR translational control in human breast tumor cells. J Cell Physiol. 2008;217(1):172–183.18452152
  • LivakKJ, SchmittgenTD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25(4):402–408.11846609
  • ChaoF, SongZ, WangS, et al. Novel circular RNA circSOBP governs amoeboid migration through the regulation of the miR-141-3p/MYPT1/p-MLC2 axis in prostate cancer. Clin Transl Med. 2021;11(3):e360.33784000
  • RhodesDR, YuJ, ShankerK, et al. ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia. 2004;6(1):1–6.15068665
  • TomczakK, CzerwińskaP, WiznerowiczM. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol. 2015;19(1a):A68–77.
  • BarrettT, WilhiteSE, LedouxP, et al. NCBI GEO: archive for functional genomics data sets–update. Nucleic Acids Res. 2013;41(Database issue):D991–995.23193258
  • CeramiE, GaoJ, DogrusozU, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401–404.22588877
  • AbidaW, CyrtaJ, HellerG, et al. Genomic correlates of clinical outcome in advanced prostate cancer. Proc Natl Acad Sci USA. 2019;116(23):11428–11436.31061129
  • HänzelmannS, CasteloR, GuinneyJ. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinform. 2013;14:7.
  • BarbieDA, TamayoP, BoehmJS, et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature. 2009;462(7269):108–112.19847166
  • Team RC. R: A Language and Environment for Statistical Computing [Computer Program]. Vienna, Austria: R Foundation for Statistical Computing; 2019.
  • BindeaG, MlecnikB, TosoliniM, et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity. 2013;39(4):782–795.24138885
  • ZhouY, ZhouB, PacheL, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10(1):1523.30944313
  • ShishkinSS, KovalevLI, PashintsevaNV, KovalevaMA, LisitskayaK. Heterogeneous nuclear ribonucleoproteins involved in the functioning of telomeres in malignant cells. Int J Mol Sci. 2019;20:3.
  • YangY, ChenQ, PiaoHY, et al. HNRNPAB-regulated lncRNA-ELF209 inhibits the malignancy of hepatocellular carcinoma. Int J Cancer. 2020;146(1):169–180.31090062
  • FeiT, ChenY, XiaoT, et al. Genome-wide CRISPR screen identifies HNRNPL as a prostate cancer dependency regulating RNA splicing. Proc Natl Acad Sci USA. 2017;114(26):E5207–e5215.28611215
  • ErrichelliL, Dini ModiglianiS, LaneveP, et al. FUS affects circular RNA expression in murine embryonic stem cell-derived motor neurons. Nat Commun. 2017;8:14741.28358055
  • LiuX, ZhouY, LouY, ZhongH. Knockdown of HNRNPA1 inhibits lung adenocarcinoma cell proliferation through cell cycle arrest at G0/G1 phase. Gene. 2016;576(2 Pt 2):791–797.26581508
  • LohTJ, MoonH, ChoS, et al. CD44 alternative splicing and hnRNP A1 expression are associated with the metastasis of breast cancer. Oncol Rep. 2015;34(3):1231–1238.26151392
  • LiH, GuoL, HuangA, et al. Nanoparticle-conjugated aptamer targeting hnRNP A2/B1 can recognize multiple tumor cells and inhibit their proliferation. Biomaterials. 2015;63:168–176.26107993
  • BalasubramaniM, DayBW, SchoenRE, GetzenbergRH. Altered expression and localization of creatine kinase B, heterogeneous nuclear ribonucleoprotein F, and high mobility group box 1 protein in the nuclear matrix associated with colon cancer. Cancer Res. 2006;66(2):763–769.16424007
  • LiF, ZhaoH, SuM, et al. HnRNP-F regulates EMT in bladder cancer by mediating the stabilization of Snail1 mRNA by binding to its 3ʹ UTR. EBioMedicine. 2019;45:208–219.31221586
  • LiF, XieW, FangY, et al. HnRNP-F promotes the proliferation of bladder cancer cells mediated by PI3K/AKT/FOXO1. J Cancer. 2021;12(1):281–291.33391425
  • Montero-CondeC, Graña-CastroO, Martín-SerranoG, et al. Hsa-miR-139-5p is a prognostic thyroid cancer marker involved in HNRNPF-mediated alternative splicing. Int J Cancer. 2020;146(2):521–530.31403184
  • DlaminiZ, MokoenaF, HullR. Abnormalities in alternative splicing in diabetes: therapeutic targets. J Mol Endocrinol. 2017;59(2):R93–r107.28716821
  • NarayananSP, SinghS, ShuklaS. A saga of cancer epigenetics: linking epigenetics to alternative splicing. Biochem J. 2017;474(6):885–896.28270561
  • BhadraM, HowellP, DuttaS, HeintzC, MairWB. Alternative splicing in aging and longevity. Hum Genet. 2020;139(3):357–369.31834493
  • BowlerE, OlteanS. Alternative splicing in angiogenesis. Int J Mol Sci. 2019;20:9.
  • SongH, WangL, ChenD, LiF. The function of Pre-mRNA alternative splicing in mammal spermatogenesis. Int J Biol Sci. 2020;16(1):38–48.31892844
  • Lara-PezziE, Gómez-SalineroJ, GattoA, García-PavíaP. The alternative heart: impact of alternative splicing in heart disease. J Cardiovasc Transl Res. 2013;6(6):945–955.23775418
  • DredgeBK, PolydoridesAD, DarnellRB. The splice of life: alternative splicing and neurological disease. Nat Rev Neurosci. 2001;2(1):43–50.11253358
  • FarinaAR, CappabiancaL, SebastianoM, ZelliV, GuadagniS, MackayAR. Hypoxia-induced alternative splicing: the 11th hallmark of cancer. J Exp Clin Cancer Res. 2020;39(1):110.32536347
  • ShimasakiN, JainA, CampanaD. NK cells for cancer immunotherapy. Nat Rev Drug Discov. 2020;19(3):200–218.31907401
  • MorvanMG, LanierLL. NK cells and cancer: you can teach innate cells new tricks. Nat Rev Cancer. 2016;16(1):7–19.26694935
  • OrangeJS. Natural killer cell deficiency. J Allergy Clin Immunol. 2013;132(3):515–525.23993353
  • ReizisB. Plasmacytoid dendritic cells: development, regulation, and function. Immunity. 2019;50(1):37–50.30650380
  • MitchellD, ChintalaS, DeyM. Plasmacytoid dendritic cell in immunity and cancer. J Neuroimmunol. 2018;322:63–73.30049538
  • GreeneTT, JoYR, ZunigaEI. Infection and cancer suppress pDC derived IFN-I. Curr Opin Immunol. 2020;66:114–122.32947131
  • SallustoF, GeginatJ, LanzavecchiaA. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu Rev Immunol. 2004;22:745–763.15032595
  • KiddP. Th1/Th2 balance: the hypothesis, its limitations, and implications for health and disease. Altern Med Rev. 2003;8(3):223–246.12946237